Improved Particle Swarm Optimization using Evolutionary Algorithm

被引:1
作者
Chansamorn, Sukanya [1 ]
Somgiat, Wichaya [1 ]
机构
[1] Rajamangala Univ Technol Tawanok, Dept Sci & Technol, Chon Buri, Thailand
来源
2022 19TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (JCSSE 2022) | 2022年
关键词
Particle Swarm Optimization; PSO; Evolutionary Algorithm; Mutation;
D O I
10.1109/JCSSE54890.2022.9836238
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, the researchers applied the Particle Swarm Optimization (PSO) algorithm combined with the Evolutionary Algorithm (EA) and called this hybrid approach PSOEA. This approach combines the benefits of PSO with EA. Integrating the PSO with the EA's mutation, recombination, and selection processes, allows a more efficient global search and faster convergence rate to obtain the optimal solution. PSO can also escape from local optima using EA process. PSOEA is experiment with 24 benchmark functions comparing with the conventional PSO and other similar approaches. The experiment result showed that PSOEA can find solutions faster and better than compared algorithms.
引用
收藏
页数:5
相关论文
共 8 条
[1]   Impacts of Coefficients on Movement Patterns in the Particle Swarm Optimization Algorithm [J].
Bonyadi, Mohammad Reza ;
Michalewicz, Zbigniew .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2017, 21 (03) :378-390
[2]  
Eberhart R., 1995, P INT S MICR HUM SCI, P39, DOI [DOI 10.1109/MHS.1995.494215, 10.1109/MHS.1995.494215]
[3]  
Jamil Momin, 2013, International Journal of Mathematical Modelling and Numerical Optimisation, V4, P150
[4]  
Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968
[5]   Introductory overview: Optimization using evolutionary algorithms and other metaheuristics [J].
Maier, H. R. ;
Razavi, S. ;
Kapelan, Z. ;
Matott, L. S. ;
Kasprzyk, J. ;
Tolson, B. A. .
ENVIRONMENTAL MODELLING & SOFTWARE, 2019, 114 :195-213
[6]  
sfu, Virtual library of simulation experiments: test functions and datasets 2024
[7]   A novel stability-based adaptive inertia weight for particle swarm optimization [J].
Taherkhani, Mojtaba ;
Safabakhsh, Reza .
APPLIED SOFT COMPUTING, 2016, 38 :281-295
[8]  
Zhang Q, 2007, LECT NOTES COMPUT SC, V4683, P344