The essential role of aggregate porosity in improving the performance of LiMnPO4/C

被引:6
作者
Fang, Haisheng [1 ,2 ,3 ]
Hu, Yuejiao [1 ,2 ,3 ]
Dai, Enrui [1 ,2 ,3 ]
Yang, Bin [1 ,2 ,3 ]
Yao, Yaochun [1 ,2 ,3 ]
Ma, Wenhui [1 ,2 ,3 ]
Dai, Yongnian [1 ,2 ,3 ]
机构
[1] Kunming Univ Sci & Technol, Natl Engn Lab Vacuum Met, Kunming 650093, Peoples R China
[2] Kunming Univ Sci & Technol, Fac Met & Energy Engn, Kunming 650093, Peoples R China
[3] Kunming Univ Sci & Technol, State Key Lab Breeding Base Complex Nonferrous Me, Kunming 650093, Peoples R China
关键词
Lithium ion batteries; Cathode; LiMnPO4; Porosity; LITHIUM-ION BATTERIES; ELECTROCHEMICAL ACTIVITY; CATION SUBSTITUTION; ELECTRODE MATERIALS; CATHODE MATERIAL; MN; FE; MG;
D O I
10.1016/j.electacta.2013.05.087
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
LiMnPO4/C samples synthesized by two different methods are characterized by physical and electrochemical measurements and the importance of porosity on the electrochemical activity is investigated. The LiMnPO4/C synthesized by solid-state route has porous micro-aggregates while the micro-aggregates of the LiMnPO4/C synthesized by wet-chemistry route are dense. The difference in porosity of the two samples leads to a significantly different electrochemical activity. When cycled at the rate of 0.1 C, the sample synthesized by solid-state route can deliver a capacity of 121 mAh g(-1), while the sample synthesized by wet-chemistry route can only deliver a capacity of 36 mAh g(-1). Our result demonstrates that the formation of sufficient pores in the aggregates is essential to achieve high electrochemical activity for LiMnPO4 based material. (c) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:215 / 218
页数:4
相关论文
共 23 条
[1]   Physical and electrochemical properties of LiMnPO4/C composite cathode prepared with different conductive carbons [J].
Bakenov, Zhumabay ;
Taniguchi, Izumi .
JOURNAL OF POWER SOURCES, 2010, 195 (21) :7445-7451
[2]   Improving the performance of lithium manganese phosphate through divalent cation substitution [J].
Chen, Guoying ;
Wilcox, James D. ;
Richardson, Thomas J. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (11) :A190-A194
[3]   LiMnPO4 Nanoplate Grown via Solid-State Reaction in Molten Hydrocarbon for Li-Ion Battery Cathode [J].
Choi, Daiwon ;
Wang, Donghai ;
Bae, In-Tae ;
Xiao, Jie ;
Nie, Zimin ;
Wang, Wei ;
Viswanathan, Vilayanur V. ;
Lee, Yun Jung ;
Zhang, Ji-Guang ;
Graff, Gordon L. ;
Yang, Zhenguo ;
Liu, Jun .
NANO LETTERS, 2010, 10 (08) :2799-2805
[4]   Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M = Fe, Mn) electrode materials [J].
Delacourt, C ;
Laffont, L ;
Bouchet, R ;
Wurm, C ;
Leriche, JB ;
Morcrette, M ;
Tarascon, JM ;
Masquelier, C .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (05) :A913-A921
[5]   Effect of particle size on LiMnPO4 cathodes [J].
Drezen, Thierry ;
Kwon, Nam-Hee ;
Bowen, Paul ;
Teerlinck, Ivo ;
Isono, Motoshi ;
Exnar, Ivan .
JOURNAL OF POWER SOURCES, 2007, 174 (02) :949-953
[6]   Effect of Zn doping on the performance of LiMnPO4 cathode for lithium ion batteries [J].
Fang, Haisheng ;
Yi, Huihua ;
Hu, Chenglin ;
Yang, Bin ;
Yao, Yaochun ;
Ma, Wenhui ;
Dai, Yongnian .
ELECTROCHIMICA ACTA, 2012, 71 :266-269
[7]   Improving the electrochemical activity of LiMnPO4 via Mn-site co-substitution with Fe and Mg [J].
Hu, Chenglin ;
Yi, Huihua ;
Fang, Haisheng ;
Yang, Bin ;
Yao, Yaochun ;
Ma, Wenhui ;
Dai, Yongnian .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (12) :1784-1787
[8]   Electrochemical Performance of LiMnPO4 Synthesized with Off-Stoichiometry [J].
Kang, Byoungwoo ;
Ceder, Gerbrand .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (07) :A808-A811
[9]   Mn based olivine electrode material with high power and energy [J].
Kim, Jongsoon ;
Seo, Dong-Hwa ;
Kim, Sung-Wook ;
Park, Young-Uk ;
Kang, Kisuk .
CHEMICAL COMMUNICATIONS, 2010, 46 (08) :1305-1307
[10]   Electrochemical lithiation and delithiation of LiMnPO4: Effect of cation substitution [J].
Lee, Jong-Won ;
Park, Min-Sik ;
Anass, Benayad ;
Park, Jin-Hwan ;
Paik, Meen-Seon ;
Doo, Seok-Gwang .
ELECTROCHIMICA ACTA, 2010, 55 (13) :4162-4169