The absolute gradings on embedded contact homology and Seiberg-Witten Floer cohomology

被引:17
作者
Cristofaro-Gardiner, Daniel [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
GLUING PSEUDOHOLOMORPHIC CURVES; CONJECTURE; PROOF;
D O I
10.2140/agt.2013.13.2239
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Y be a closed connected contact 3-manifold. In [14], Taubes defines an isomorphism between the embedded contact homology (ECH) of Y and its Seiberg-Witten Floer cohomology. Both the ECH of Y and the Seiberg-Witten Floer cohomology of Y admit absolute gradings by homotopy classes of oriented 2-plane fields. We show that Taubes' isomorphism preserves these gradings, which implies that the absolute grading on ECH is a topological invariant. To do this, we prove another result relating the expected dimension of any component of the Seiberg-Witten moduli space over a completed connected symplectic cobordism to the ECH index of a corresponding homology class.
引用
收藏
页码:2239 / 2260
页数:22
相关论文
共 16 条
[1]   On symplectic cobordisms [J].
Etnyre, JB ;
Honda, K .
MATHEMATISCHE ANNALEN, 2002, 323 (01) :31-39
[2]  
Etnyre JB, 2005, HANDBOOK OF KNOT THEORY, P105, DOI 10.1016/B978-044451452-3/50004-6
[3]  
Geiges H, 2006, HANDBOOK OF DIFFERENTIAL GEOMETRY, VOL II, P315
[4]   An index inequality for embedded pseudoholomorphic curves in symplectizations [J].
Hutchings, M .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2002, 4 (04) :313-361
[5]  
Hutchings M, ARXIV11113324, P3324
[6]  
Hutchings M., 1999, SYMPLECTIC GEOMETRY, V7, P103
[7]  
Hutchings M, 2007, J SYMPLECT GEOM, V5, P43
[8]  
Hutchings M, 2011, MATH RES LETT, V18, P295
[9]  
Hutchings M, 2010, B AM MATH SOC, V47, P73
[10]  
Hutchings M, 2009, CRM PROC & LECT NOTE, V49, P263