25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity

被引:74
作者
Oldenbeuving, R. M. [1 ,2 ]
Klein, E. J. [3 ]
Offerhaus, H. L. [2 ,4 ]
Lee, C. J. [1 ,2 ,5 ]
Song, H. [6 ,7 ]
Boller, K-J [1 ,2 ]
机构
[1] Univ Twente, Laser Phys & Nonlinear Opt Grp, NL-7500 AE Enschede, Netherlands
[2] MESA Res Inst Nanotechnol, NL-7500 AE Enschede, Netherlands
[3] XiO Photon, NL-7500 BG Enschede, Netherlands
[4] Univ Twente, Opt Sci Grp, NL-7500 AE Enschede, Netherlands
[5] FOM Inst DIFFER, NL-3439 MN Nieuwegein, Netherlands
[6] Delft Univ Technol, Delft Ctr Syst & Control, NL-2628 CD Delft, Netherlands
[7] Zhejiang Univ, Inst Underwater Technol & Ship Engn, Hangzhou 310058, Zhejiang, Peoples R China
关键词
LINEWIDTH; POWER; COMPACT;
D O I
10.1088/1612-2011/10/1/015804
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report on the spectral properties of a diode laser with a tunable external cavity mirror, realized as an integrated optics waveguide circuit. Even though the external cavity is short compared to that of other narrow bandwidth external cavity lasers, the spectral bandwidth of this tunable laser is as small as 25 kHz (FWHM). The side-mode suppression ratio (SMSR) is 50 dB. The laser is able to access preset wavelengths in 200 mu s and can be tuned over the full telecommunications C-band (1530-1565 nm).
引用
收藏
页数:8
相关论文
共 25 条
[1]   Compact, lower-power-consumption wavelength tunable laser fabricated with silicon photonic-wire waveguide micro-ring resonators [J].
Chu, Tao ;
Fujioka, Nobuhide ;
Ishizaka, Masashige .
OPTICS EXPRESS, 2009, 17 (16) :14063-14068
[2]  
Driessen Alfred, 2005, Proceedings of the SPIE - The International Society for Optical Engineering, V5956, p59560Q, DOI 10.1117/12.627050
[3]   Compact and Low Power Consumption Hybrid Integrated Wavelength Tunable Laser Module Using Silicon Waveguide Resonators [J].
Fujioka, Nobuhide ;
Chu, Tao ;
Ishizaka, Masashige .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2010, 28 (21) :3115-3120
[4]  
Geuzebroek D., 2002, IEEELEOS BENELUX CHA, P155
[5]  
Grover R, 2002, J LIGHTWAVE TECHNOL, V20, P872
[6]   Analysis of a loss-compensated recirculating delayed self-heterodyne interferometer for laser linewidth measurement [J].
Han, M ;
Wang, A .
APPLIED PHYSICS B-LASERS AND OPTICS, 2005, 81 (01) :53-58
[7]   Large-scale integrated optics using TriPleX™ waveguide technology: from UV to IR [J].
Heideman, Rene ;
Leinse, Arne ;
Hoving, Willem ;
Dekker, Ronald ;
Geuzebroek, Douwe ;
Klein, Edwin ;
Stoffer, Remco ;
Roeloffzen, Chris ;
Zhuang, Leimeng ;
Meijerink, Arjan .
PHOTONICS PACKAGING, INTEGRATION, AND INTERCONNECTS IX, 2009, 7221
[8]   THEORY OF THE LINEWIDTH OF SEMICONDUCTOR-LASERS [J].
HENRY, CH .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1982, 18 (02) :259-264
[9]   Coherent detection in optical fiber systems [J].
Ip, Ezra ;
Lau, Alan Pak Tao ;
Barros, Daniel J. F. ;
Kahn, Joseph M. .
OPTICS EXPRESS, 2008, 16 (02) :753-791
[10]   Making optical atomic clocks more stable with 10-16-level laser stabilization [J].
Jiang, Y. Y. ;
Ludlow, A. D. ;
Lemke, N. D. ;
Fox, R. W. ;
Sherman, J. A. ;
Ma, L. -S. ;
Oates, C. W. .
NATURE PHOTONICS, 2011, 5 (03) :158-161