Direct and inverse approximation theorems for the p-version of the finite element method in the framework of weighted Besov spaces.: Part I:: Approximability of functions in the weighted Besov spaces

被引:85
作者
Babuska, I [1 ]
Guo, BQ
机构
[1] Univ Texas, Texas Inst Computat & Appl Math, Austin, TX 78712 USA
[2] Univ Manitoba, Dept Math, Winnipeg, MB R3T 2N2, Canada
关键词
Jacobi-weighted Besov spaces; modified Jacobi-weighted Besov spaces; Jacobi weights; singular function of r(gamma)-type and r(gamma) log(upsilon) r-type; approximability; the p-version of the finite element method;
D O I
10.1137/S0036142901356551
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This is the first of a series devoted to the approximation theory of the p-version of the finite element method in two dimensions in the framework of the Jacobi-weighted Besov spaces, which provides the p-version with a solid mathematical foundation. In this paper, we establish a mathematical framework of the Jacobi-weighted Besov and Sobolev spaces and analyze the approximability of the functions in the framework of these spaces, particularly, singular functions of r(gamma)-type and r(gamma) log(nu) r-type. These spaces and the corresponding approximation properties are of fundamental importance to the proof of the optimal convergence for the p-version in two dimensions in part II and to various sharp inverse approximation theorems in part III.
引用
收藏
页码:1512 / 1538
页数:27
相关论文
共 26 条
[21]  
Guo BY, 1998, J MATH ANAL APPL, V226, P180
[22]  
Guo BY, 2000, SIAM J NUMER ANAL, V37, P621
[23]  
Hardy G.H., 1959, INEQUALITIES
[24]  
PINKUS A, 1985, N WIDTH APPROXIMATIO
[25]  
Ryzhik I.M., 1975, TABLE INTEGRALS SERI, Vseventh
[26]  
Triebel H., 1978, Interpolation theory, function spaces, differential operators