Direct and inverse approximation theorems for the p-version of the finite element method in the framework of weighted Besov spaces.: Part I:: Approximability of functions in the weighted Besov spaces

被引:85
作者
Babuska, I [1 ]
Guo, BQ
机构
[1] Univ Texas, Texas Inst Computat & Appl Math, Austin, TX 78712 USA
[2] Univ Manitoba, Dept Math, Winnipeg, MB R3T 2N2, Canada
关键词
Jacobi-weighted Besov spaces; modified Jacobi-weighted Besov spaces; Jacobi weights; singular function of r(gamma)-type and r(gamma) log(upsilon) r-type; approximability; the p-version of the finite element method;
D O I
10.1137/S0036142901356551
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This is the first of a series devoted to the approximation theory of the p-version of the finite element method in two dimensions in the framework of the Jacobi-weighted Besov spaces, which provides the p-version with a solid mathematical foundation. In this paper, we establish a mathematical framework of the Jacobi-weighted Besov and Sobolev spaces and analyze the approximability of the functions in the framework of these spaces, particularly, singular functions of r(gamma)-type and r(gamma) log(nu) r-type. These spaces and the corresponding approximation properties are of fundamental importance to the proof of the optimal convergence for the p-version in two dimensions in part II and to various sharp inverse approximation theorems in part III.
引用
收藏
页码:1512 / 1538
页数:27
相关论文
共 26 条
[1]  
[Anonymous], 1986, Comp. Mech
[2]  
Azaiez M., 1999, SER APPL MATH, V3
[3]   THE H-P VERSION OF THE FINITE-ELEMENT METHOD FOR DOMAINS WITH CURVED BOUNDARIES [J].
BABUSKA, I ;
GUO, BQ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1988, 25 (04) :837-861
[4]   THE OPTIMAL CONVERGENCE RATE OF THE P-VERSION OF THE FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
SURI, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (04) :750-776
[5]   REGULARITY OF THE SOLUTION OF ELLIPTIC PROBLEMS WITH PIECEWISE ANALYTIC DATA .1. BOUNDARY-VALUE PROBLEMS FOR LINEAR ELLIPTIC EQUATION OF 2ND ORDER [J].
BABUSKA, I ;
GUO, BQ .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1988, 19 (01) :172-203
[6]  
BABUSKA I, 1987, RAIRO-MATH MODEL NUM, V21, P199
[7]  
Babuska I, 2000, NUMER MATH, V85, P219, DOI 10.1007/s002110000130
[8]   THE P-VERSION OF THE FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
SZABO, BA ;
KATZ, IN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1981, 18 (03) :515-545
[9]  
BABUSKA I, UNPUB DIRECT INVER 1
[10]  
BABUSKA I, 1999, 9932 TICAM U TEX