New Ramanujan-like congruences modulo powers of 2 and 3 for overpartitions

被引:71
作者
Yao, Olivia X. M. [1 ]
Xia, Ernest X. W. [1 ]
机构
[1] Jiangsu Univ, Dept Math, Zhenjiang 212013, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Overpartition; Congruence; 2-Dissection; ANALOGS;
D O I
10.1016/j.jnt.2012.11.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (p) over bar (n) denote the number of overpartitions of n. In recent works, Fortin, Jacob and Mathieu, and Hirschhorn and Sellers established some congruences modulo powers of 2 for (p) over bar (n). Much less is known for powers of 3. In this paper, employing elementary generating function dissection techniques, we prove that for all nonnegative integers n, (p) over bar (24n + 19) equivalent to 0 (mod 27) and (p) over bar (92n + 12) equivalent to 0 (mod 9). Furthermore, we also derive some new congruences modulo powers of 2 for (p) over bar (n). (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1932 / 1949
页数:18
相关论文
共 22 条
[1]   Analogues of Ramanujan's partition identities and congruences arising from his theta functions and modular equations [J].
Baruah, Nayandeep Deka ;
Ojah, Kanan Kumari .
RAMANUJAN JOURNAL, 2012, 28 (03) :385-407
[2]  
Berndt B. C., 1991, Ramanujan's Notebooks
[3]  
Berndt B.C., 2006, Number Theory in the Spirit of Ramanujan
[4]   Rank and crank moments for overpartitions [J].
Bringmann, Kathrin ;
Lovejoy, Jeremy ;
Osburn, Robert .
JOURNAL OF NUMBER THEORY, 2009, 129 (07) :1758-1772
[5]   Overpartitions and class numbers of binary quadratic forms [J].
Bringmann, Kathrin ;
Lovejoy, Jeremy .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (14) :5513-5516
[6]   Results of Hurwitz type for three squares [J].
Cooper, S ;
Hirschhorn, MD .
DISCRETE MATHEMATICS, 2004, 274 (1-3) :9-24
[7]   Overpartitions [J].
Corteel, S ;
Lovejoy, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (04) :1623-1635
[8]   Jagged partitions [J].
Fortin, JF ;
Jacob, P ;
Mathieu, P .
RAMANUJAN JOURNAL, 2005, 10 (02) :215-235
[9]   CUBIC ANALOGS OF THE JACOBIAN THETA-FUNCTION THETA(Z,Q) [J].
HIRSCHHORN, M ;
GARVAN, F ;
BORWEIN, J .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1993, 45 (04) :673-694
[10]  
Hirschhorn M. D., 2005, Journal of Combinatorial Mathematics and Combinatorial Computing, V53, P65