Self-consistent quantum process tomography

被引:225
作者
Merkel, Seth T. [1 ]
Gambetta, Jay M. [1 ]
Smolin, John A. [1 ]
Poletto, Stefano [1 ]
Corcoles, Antonio D. [1 ]
Johnson, Blake R. [2 ]
Ryan, Colm A. [2 ]
Steffen, Matthias [1 ]
机构
[1] IBM Corp, TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
[2] Raytheon BBN Technol, Cambridge, MA 02138 USA
来源
PHYSICAL REVIEW A | 2013年 / 87卷 / 06期
关键词
D O I
10.1103/PhysRevA.87.062119
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum process tomography is a necessary tool for verifying quantum gates and diagnosing faults in architectures and gate design. We show that the standard approach of process tomography is grossly inaccurate in the case where the states and measurement operators used to interrogate the system are generated by gates that have some systematic error, a situation all but unavoidable in any practical setting. These errors in tomography cannot be fully corrected through oversampling or by performing a larger set of experiments. We present an alternative method for tomography to reconstruct an entire library of gates in a self-consistent manner. The essential ingredient is to define a likelihood function that assumes nothing about the gates used for preparation and measurement. In order tomake the resulting optimization tractable, we linearize about the target, a reasonable approximation when benchmarking a quantum computer as opposed to probing a black-box function.
引用
收藏
页数:9
相关论文
共 32 条
[1]  
[Anonymous], 2009, THEOR COMPUT
[2]   Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits [J].
Bialczak, R. C. ;
Ansmann, M. ;
Hofheinz, M. ;
Lucero, E. ;
Neeley, M. ;
O'Connell, A. D. ;
Sank, D. ;
Wang, H. ;
Wenner, J. ;
Steffen, M. ;
Cleland, A. N. ;
Martinis, J. M. .
NATURE PHYSICS, 2010, 6 (06) :409-413
[3]   Hedged Maximum Likelihood Quantum State Estimation [J].
Blume-Kohout, Robin .
PHYSICAL REVIEW LETTERS, 2010, 105 (20)
[4]   Optimal, reliable estimation of quantum states [J].
Blume-Kohout, Robin .
NEW JOURNAL OF PHYSICS, 2010, 12
[5]  
Boyd S., 2004, CONVEX OPTIMIZATION, VFirst, DOI DOI 10.1017/CBO9780511804441
[6]  
Braczyk A M, 2012, NEW J PHYS, V14
[7]   COMPLETELY POSITIVE LINEAR MAPS ON COMPLEX MATRICES [J].
CHOI, MD .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 10 (03) :285-290
[8]   Universal Quantum Gate Set Approaching Fault-Tolerant Thresholds with Superconducting Qubits [J].
Chow, Jerry M. ;
Gambetta, Jay M. ;
Corcoles, A. D. ;
Merkel, Seth T. ;
Smolin, John A. ;
Rigetti, Chad ;
Poletto, S. ;
Keefe, George A. ;
Rothwell, Mary B. ;
Rozen, J. R. ;
Ketchen, Mark B. ;
Steffen, M. .
PHYSICAL REVIEW LETTERS, 2012, 109 (06)
[9]   Reliable Quantum State Tomography [J].
Christandl, Matthias ;
Renner, Renato .
PHYSICAL REVIEW LETTERS, 2012, 109 (12)
[10]  
Chuang IL, 1997, J MOD OPTIC, V44, P2455, DOI 10.1080/095003497152609