N-order bright and dark rogue waves in a resonant erbium-doped fiber system

被引:115
作者
He, Jingsong [1 ]
Xu, Shuwei [2 ]
Porseizan, K. [3 ]
机构
[1] Ningbo Univ, Dept Math, Ningbo 315211, Zhejiang, Peoples R China
[2] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
[3] Pondicherry Univ, Dept Phys, Pondicherry 605014, India
来源
PHYSICAL REVIEW E | 2012年 / 86卷 / 06期
关键词
NONLINEAR SCHRODINGER-EQUATION; SELF-INDUCED-TRANSPARENCY; OPTICAL SOLITON PROPAGATION; MAXWELL-BLOCH SYSTEM; MULTISOLITON SOLUTIONS; COUPLED SYSTEM; NLS EQUATION; PULSES; COEXISTENCE; GUIDE;
D O I
10.1103/PhysRevE.86.066603
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The rogue waves in a resonant erbium-doped fiber system governed by a coupled system of the nonlinear Schrodinger equation and the Maxwell-Bloch equation (NLS-MB equations) are given explicitly by a Taylor series expansion about the breather solutions of the normalized slowly varying amplitude of the complex field envelope E, polarization p, and population inversion eta. The n-order breather solutions of the three fields are constructed using a Darboux transformation (DT) by assuming periodic seed solutions. Moreover, the n-order rogue waves are given by determinant forms with n + 3 free parameters. Furthermore, the possible connection between our rouge waves and the generation of supercontinuum generation is discussed. DOI: 10.1103/PhysRevE.86.066603
引用
收藏
页数:17
相关论文
共 71 条
[1]   How to excite a rogue wave [J].
Akhmediev, N. ;
Soto-Crespo, J. M. ;
Ankiewicz, A. .
PHYSICAL REVIEW A, 2009, 80 (04)
[2]   MODULATION INSTABILITY AND PERIODIC-SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION [J].
AKHMEDIEV, NN ;
KORNEEV, VI .
THEORETICAL AND MATHEMATICAL PHYSICS, 1986, 69 (02) :1089-1093
[3]   Rogue wave triplets [J].
Ankiewicz, Adrian ;
Kedziora, David J. ;
Akhmediev, Nail .
PHYSICS LETTERS A, 2011, 375 (28-29) :2782-2785
[4]   Discrete rogue waves of the Ablowitz-Ladik and Hirota equations [J].
Ankiewicz, Adrian ;
Akhmediev, Nail ;
Soto-Crespo, J. M. .
PHYSICAL REVIEW E, 2010, 82 (02)
[5]   Rogue waves and rational solutions of the Hirota equation [J].
Ankiewicz, Adrian ;
Soto-Crespo, J. M. ;
Akhmediev, Nail .
PHYSICAL REVIEW E, 2010, 81 (04)
[6]   Granularity and Inhomogeneity Are the Joint Generators of Optical Rogue Waves [J].
Arecchi, F. T. ;
Bortolozzo, U. ;
Montina, A. ;
Residori, S. .
PHYSICAL REVIEW LETTERS, 2011, 106 (15)
[7]   Solutions of the Vector Nonlinear Schrodinger Equations: Evidence for Deterministic Rogue Waves [J].
Baronio, Fabio ;
Degasperis, Antonio ;
Conforti, Matteo ;
Wabnitz, Stefan .
PHYSICAL REVIEW LETTERS, 2012, 109 (04)
[8]  
Bo-Ling G., 2011, CHINESE PHYS LETT, V28
[9]   Rogue Wave Observation in a Water Wave Tank [J].
Chabchoub, A. ;
Hoffmann, N. P. ;
Akhmediev, N. .
PHYSICAL REVIEW LETTERS, 2011, 106 (20)
[10]   Controllable optical rogue waves in the femtosecond regime [J].
Dai, Chao-Qing ;
Zhou, Guo-Quan ;
Zhang, Jie-Fang .
PHYSICAL REVIEW E, 2012, 85 (01)