Stability analysis of a class of fractional delay differential equations

被引:26
作者
Bhalekar, Sachin B. [1 ]
机构
[1] Shivaji Univ, Dept Math, Kolhapur 416004, Maharashtra, India
来源
PRAMANA-JOURNAL OF PHYSICS | 2013年 / 81卷 / 02期
关键词
Caputo derivative; delay; eigenvalues; stability; logistic equation; SYSTEMS; ALGORITHM; STATE;
D O I
10.1007/s12043-013-0569-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we analyse stability of nonlinear fractional order delay differential equations of the form , where D (alpha) is a Caputo fractional derivative of order 0 < alpha a parts per thousand currency signaEuro parts per thousand 1. We describe stability regions using critical curves. To explain the proposed theory, we discuss fractional order logistic equation with delay.
引用
收藏
页码:215 / 224
页数:10
相关论文
共 26 条
[1]  
[Anonymous], 2006, THEORY APPL FRACTION
[2]  
[Anonymous], P 16 INT FED AUT CON
[3]  
[Anonymous], 1998, J MATH SYST ESTIMATI
[4]  
[Anonymous], 2010, An Introduction to marketing research
[5]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[6]  
[Anonymous], 2008, J ELECT SCI TECHNOL
[7]  
Bhalekar S., 2011, J. Fract. Calc. Appl, V5, P1, DOI DOI 10.1155/2011/250763
[8]   Dynamical analysis of fractional order U‡ar prototype delayed system [J].
Bhalekar, Sachin .
SIGNAL IMAGE AND VIDEO PROCESSING, 2012, 6 (03) :513-519
[9]   Fractional Bloch equation with delay [J].
Bhalekar, Sachin ;
Daftardar-Gejji, Varsha ;
Baleanu, Dumitru ;
Magin, Richard .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (05) :1355-1365
[10]   Fractional ordered Liu system with time-delay [J].
Bhalekar, Sachin ;
Daftardar-Gejji, Varsha .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (08) :2178-2191