Spatio-temporal Semantic Features for Human Action Recognition

被引:0
|
作者
Liu, Jia [1 ,2 ]
Wang, Xiaonian [1 ]
Li, Tianyu [1 ]
Yang, Jie [1 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit, Shanghai 200030, Peoples R China
[2] Armed Police Forces, Coll Engn, Network & Informat Secur Key Lab, Xian 710086, Peoples R China
来源
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS | 2012年 / 6卷 / 10期
关键词
action recognition; spatio-temporal features; topic model; markov model;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Most approaches to human action recognition is limited due to the use of simple action datasets under controlled environments or focus on excessively localized features without sufficiently exploring the spatio-temporal information. This paper proposed a framework for recognizing realistic human actions. Specifically, a new action representation is proposed based on computing a rich set of descriptors from keypoint trajectories. To obtain efficient and compact representations for actions, we develop a feature fusion method to combine spatial-temporal local motion descriptors by the movement of the camera which is detected by the distribution of spatio-temporal interest points in the clips. A new topic model called Markov Semantic Model is proposed for semantic feature selection which relies on the different kinds of dependencies between words produced by "syntactic" and "semantic" constraints. The informative features are selected collaboratively based on the different types of dependencies between words produced by short range and long range constraints. Building on the nonlinear SVMs, we validate this proposed hierarchical framework on several realistic action datasets.
引用
收藏
页码:2632 / 2649
页数:18
相关论文
共 50 条
  • [1] Human Action Recognition Based on Spatio-temporal Features
    Sawant, Nikhil
    Biswas, K. K.
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PROCEEDINGS, 2009, 5909 : 357 - 362
  • [2] Study of human action recognition based on improved spatio-temporal features
    Ji X.-F.
    Wu Q.-Q.
    Ju Z.-J.
    Wang Y.-Y.
    International Journal of Automation and Computing, 2014, 11 (05) : 500 - 509
  • [3] A fast human action recognition network based on spatio-temporal features
    Xu, Jie
    Song, Rui
    Wei, Haoliang
    Guo, Jinhong
    Zhou, Yifei
    Huang, Xiwei
    NEUROCOMPUTING, 2021, 441 : 350 - 358
  • [4] Study of Human Action Recognition Based on Improved Spatio-temporal Features
    XiaoFei Ji
    QianQian Wu
    ZhaoJie Ju
    YangYang Wang
    International Journal of Automation & Computing, 2014, 11 (05) : 500 - 509
  • [5] Study of Human Action Recognition Based on Improved Spatio-temporal Features
    Xiao-Fei Ji
    Qian-Qian Wu
    Zhao-Jie Ju
    Yang-Yang Wang
    International Journal of Automation and Computing, 2014, (05) : 500 - 509
  • [6] A fast human action recognition network based on spatio-temporal features
    Xu, Jie
    Song, Rui
    Wei, Haoliang
    Guo, Jinhong
    Zhou, Yifei
    Huang, Xiwei
    Neurocomputing, 2021, 441 : 350 - 358
  • [7] Human Action Recognition by SOM Considering the Probability of Spatio-temporal Features
    Ji, Yanli
    Shimada, Atsushi
    Taniguchi, Rin-ichiro
    NEURAL INFORMATION PROCESSING: MODELS AND APPLICATIONS, PT II, 2010, 6444 : 391 - 398
  • [8] Human Action Recognition in Video by Fusion of Structural and Spatio-temporal Features
    Borzeshi, Ehsan Zare
    Concha, Oscar Perez
    Piccardi, Massimo
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, 2012, 7626 : 474 - 482
  • [9] Spatio-temporal information for human action recognition
    Yao, Li
    Liu, Yunjian
    Huang, Shihui
    EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2016,
  • [10] Spatio-temporal information for human action recognition
    Li Yao
    Yunjian Liu
    Shihui Huang
    EURASIP Journal on Image and Video Processing, 2016