MHD code using multi graphical processing units: SMAUG

被引:1
作者
Gyenge, N. [1 ,2 ,4 ]
Griffiths, M. K. [1 ,3 ]
Erdelyi, R. [1 ,4 ]
机构
[1] Univ Sheffield, Sch Math & Stat, SP2RC, Solar Phys & Space Plasmas Res Ctr, Hounsfield Rd, Sheffield S3 7RH, S Yorkshire, England
[2] Hungarian Acad Sci, Res Ctr Astron & Earth Sci, Debrecen Heliophys Observ DHO, Konkoly Observ, POB 30, H-4010 Debrecen, Hungary
[3] Univ Sheffield, Corp Informat & Comp Serv, 10-12 Brunswick St, Sheffield S10 2FN, S Yorkshire, England
[4] Eotvos Lorand Univ, Dept Astron, H-1518 Budapest, Hungary
基金
英国科学技术设施理事会;
关键词
Numerical simulations; Magnetohydrodynamics; Graphical processing units; Sheffield advanced code; RADIATION MAGNETOHYDRODYNAMICS CODE; 2 SPACE DIMENSIONS; GRAVITATIONALLY-STRATIFIED MEDIA; ASTROPHYSICAL FLOWS; HYDRODYNAMIC ALGORITHMS; SIMULATIONS; TESTS; ZEUS-2D; SYSTEMS;
D O I
10.1016/j.asr.2017.10.027
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper introduces the Sheffield Magnetohydrodynamics Algorithm Using GPUs (SMAUG+), an advanced numerical code for solving magnetohydrodynamic (MHD) problems, using multi-GPU systems. Multi-GPU systems facilitate the development of accelerated codes and enable us to investigate larger model sizes and/or more detailed computational domain resolutions. This is a significant advancement over the parent single-GPU MHD code, SMAUG (Griffiths et al., 2015). Here, we demonstrate the validity of the SMAUG + code, describe the parallelisation techniques and investigate performance benchmarks. The initial configuration of the Orszag-Tang vortex simulations are distributed among 4, 16, 64 and 100 GPUs. Furthermore, different simulation box resolutions are applied: 1000 x 1000, 2044 x 2044, 4000 x 4000 and 8000 x 8000. We also tested the code with the Brio-Wu shock tube simulations with model size of 800 employing up to 10 GPUs. Based on the test results, we observed speed ups and slow downs, depending on the granularity and the communication overhead of certain parallel tasks. The main aim of the code development is to provide massively parallel code without the memory limitation of a single GPU. By using our code, the applied model size could be significantly increased. We demonstrate that we are able to successfully compute numerically valid and large 2D MHD problems. (C) 2017 COSPAR. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:683 / 690
页数:8
相关论文
共 50 条
  • [31] Assessing the quality of mobile graphical user interfaces using multi-objective optimization
    Soui, Makram
    Chouchane, Mabrouka
    Mkaouer, Mohamed Wiem
    Kessentini, Marouane
    Ghedira, Khaled
    SOFT COMPUTING, 2020, 24 (10) : 7685 - 7714
  • [32] A study of major mergers using a multi-phase ISM code
    Weniger, J.
    Theis, Ch.
    Harfst, S.
    ASTRONOMISCHE NACHRICHTEN, 2009, 330 (9-10) : 1019 - 1024
  • [33] Efficient Implementation of Total FETI Solver for Graphic Processing Units Using Schur Complement
    Riha, Lubomir
    Brzobohaty, Tomas
    Markopoulos, Alexandros
    Kozubek, Tomas
    Meca, Ondrej
    Schenk, Olaf
    Vanroose, Wim
    HIGH PERFORMANCE COMPUTING IN SCIENCE AND ENGINEERING, HPCSE 2015, 2016, 9611 : 85 - 100
  • [34] The feasibility of genome-scale biological network inference using Graphics Processing Units
    Thiagarajan, Raghuram
    Alavi, Amir
    Podichetty, Jagdeep T.
    Bazil, Jason N.
    Beard, Daniel A.
    ALGORITHMS FOR MOLECULAR BIOLOGY, 2017, 12
  • [35] CONSTRAINT PRESERVING SCHEMES USING POTENTIAL-BASED FLUXES. III. GENUINELY MULTI-DIMENSIONAL SCHEMES FOR MHD EQUATIONS
    Mishra, Siddhartha
    Tadmor, Eitan
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (03): : 661 - 680
  • [36] Open-source code for self-consistent field theory calculations of block polymer phase behavior on graphics processing units
    Cheong, Guo Kang
    Chawla, Anshul
    Morse, David C.
    Dorfman, Kevin D.
    EUROPEAN PHYSICAL JOURNAL E, 2020, 43 (02)
  • [37] Developing a multiscale, multi-resolution agent-based brain tumor model by graphics processing units
    Zhang, Le
    Jiang, Beini
    Wu, Yukun
    Strouthos, Costas
    Sun, Phillip Zhe
    Su, Jing
    Zhou, Xiaobo
    THEORETICAL BIOLOGY AND MEDICAL MODELLING, 2011, 8
  • [38] Numerical study of plasma evolution X-pinches in two- and three-dimensional geometry using a MHD code, STHENO
    Sang-Min Byun
    Yong-Su Na
    Kyoung-Jae Chung
    Deok-Kyu Kim
    Sangjun Lee
    Chanyoung Lee
    Jaegon Lee
    Jonghyeon Ryu
    Journal of the Korean Physical Society, 2021, 79 : 818 - 827
  • [39] Numerical study of plasma evolution X-pinches in two- and three-dimensional geometry using a MHD code, STHENO
    Byun, Sang-Min
    Na, Yong-Su
    Chung, Kyoung-Jae
    Kim, Deok-Kyu
    Lee, Sangjun
    Lee, Chanyoung
    Lee, Jaegon
    Ryu, Jonghyeon
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2021, 79 (09) : 818 - 827
  • [40] Accelerating the Gillespie Exact Stochastic Simulation Algorithm Using Hybrid Parallel Execution on Graphics Processing Units
    Komarov, Ivan
    D'Souza, Roshan M.
    PLOS ONE, 2012, 7 (11):