Hard versus fuzzy c-means clustering for color quantization

被引:34
|
作者
Wen, Quan [2 ]
Celebi, M. Emre [1 ]
机构
[1] Louisiana State Univ, Dept Comp Sci, Shreveport, LA 71105 USA
[2] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 610054, Peoples R China
来源
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING | 2011年
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
K-MEANS; EDGE-DETECTION; ALGORITHM; SCHEME;
D O I
10.1186/1687-6180-2011-118
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Color quantization is an important operation with many applications in graphics and image processing. Most quantization methods are essentially based on data clustering algorithms. Recent studies have demonstrated the effectiveness of hard c-means (k-means) clustering algorithm in this domain. Other studies reported similar findings pertaining to the fuzzy c-means algorithm. Interestingly, none of these studies directly compared the two types of c-means algorithms. In this study, we implement fast and exact variants of the hard and fuzzy c-means algorithms with several initialization schemes and then compare the resulting quantizers on a diverse set of images. The results demonstrate that fuzzy c-means is significantly slower than hard c-means, and that with respect to output quality, the former algorithm is neither objectively nor subjectively superior to the latter.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Educational data mining for students' performance based on fuzzy C-means clustering
    Li, Yu
    Gou, Jin
    Fan, Zongwen
    JOURNAL OF ENGINEERING-JOE, 2019, 2019 (11): : 8245 - 8250
  • [42] New fuzzy c-means clustering model based on the data weighted approach
    Tang, Chenglong
    Wang, Shigang
    Xu, Wei
    DATA & KNOWLEDGE ENGINEERING, 2010, 69 (09) : 881 - 900
  • [43] Comparison Between K-Means and Fuzzy C-Means Clustering in Network Traffic Activities
    Purnawansyah
    Haviluddin
    Gafar, Achmad Fanany Onnilita
    Tahyudin, Imam
    PROCEEDINGS OF THE ELEVENTH INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE AND ENGINEERING MANAGEMENT, 2018, : 300 - 310
  • [44] Hybrid methods for fuzzy clustering based on fuzzy c-means and improved particle swarm optimization
    Silva Filho, Telmo M.
    Pimentel, Bruno A.
    Souza, Renata M. C. R.
    Oliveira, Adriano L. I.
    EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (17-18) : 6315 - 6328
  • [45] Information Theoretical Importance Sampling Clustering and Its Relationship With Fuzzy C-Means
    Zhang, Jiangshe
    Ji, Lizhen
    Wang, Meng
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2024, 32 (04) : 2164 - 2175
  • [46] Fuzzy c-means clustering-based mating restriction for multiobjective optimization
    Zhang, Yi
    Li, Zimu
    Zhang, Hu
    Yu, Zhen
    Lu, Tongtong
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2018, 9 (10) : 1609 - 1621
  • [47] Sparse Regularization in Fuzzy c-Means for High-Dimensional Data Clustering
    Chang, Xiangyu
    Wang, Qingnan
    Liu, Yuewen
    Wang, Yu
    IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (09) : 2616 - 2627
  • [48] Hybrid Fuzzy C-Means Clustering Algorithm Oriented to Big Data Realms
    Perez-Ortega, Joaquin
    Silvia Roblero-Aguilar, Sandra
    Nely Almanza-Ortega, Nelva
    Frausto Solis, Juan
    Zavala-Diaz, Crispin
    Hernandez, Yasmin
    Landero-Najera, Vanesa
    AXIOMS, 2022, 11 (08)
  • [49] Kernel intuitionistic fuzzy c-means and state transition algorithm for clustering problem
    Zhou, Xiaojun
    Zhang, Rundong
    Wang, Xiangyue
    Huang, Tingwen
    Yang, Chunhua
    SOFT COMPUTING, 2020, 24 (20) : 15507 - 15518
  • [50] Fuzzy C-Means Clustering With Local Information and Kernel Metric for Image Segmentation
    Gong, Maoguo
    Liang, Yan
    Shi, Jiao
    Ma, Wenping
    Ma, Jingjing
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (02) : 573 - 584