Hard versus fuzzy c-means clustering for color quantization

被引:34
|
作者
Wen, Quan [2 ]
Celebi, M. Emre [1 ]
机构
[1] Louisiana State Univ, Dept Comp Sci, Shreveport, LA 71105 USA
[2] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 610054, Peoples R China
来源
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING | 2011年
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
K-MEANS; EDGE-DETECTION; ALGORITHM; SCHEME;
D O I
10.1186/1687-6180-2011-118
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Color quantization is an important operation with many applications in graphics and image processing. Most quantization methods are essentially based on data clustering algorithms. Recent studies have demonstrated the effectiveness of hard c-means (k-means) clustering algorithm in this domain. Other studies reported similar findings pertaining to the fuzzy c-means algorithm. Interestingly, none of these studies directly compared the two types of c-means algorithms. In this study, we implement fast and exact variants of the hard and fuzzy c-means algorithms with several initialization schemes and then compare the resulting quantizers on a diverse set of images. The results demonstrate that fuzzy c-means is significantly slower than hard c-means, and that with respect to output quality, the former algorithm is neither objectively nor subjectively superior to the latter.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Fuzzy C-Means Clustering With A New Regularization Term for Image Segmentation
    Shao, Guangpu
    Gao, Junbin
    Wang, Tianjiang
    Liu, Fang
    Shu, Yucheng
    Yang, Yong
    PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 2870 - 2877
  • [32] COMPARISON OF CLUSTERING IN TUBERCULOSIS USING FUZZY C-MEANS AND K-MEANS METHODS
    Rochman, Eka Mala Sari
    Miswanto
    Suprajitno, Herry
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2022,
  • [33] Rough C-means and Fuzzy Rough C-means for Colour Quantisation
    Schaefer, Gerald
    Hu, Qinghua
    Zhou, Huiyu
    Peters, James F.
    Hassanien, Aboul Ella
    FUNDAMENTA INFORMATICAE, 2012, 119 (01) : 113 - 120
  • [34] Vector fuzzy C-means
    Hadi, Mahdipour
    Morteza, Khademi
    Hadi, Sadoghi Yazdi
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2013, 24 (02) : 363 - 381
  • [35] Fast Color Quantization via Fuzzy Clustering
    Szilagyi, Laszlo
    Denesi, Gellert
    Enachescu, Calin
    NEURAL INFORMATION PROCESSING, ICONIP 2016, PT IV, 2016, 9950 : 95 - 103
  • [36] Fuzzy C-Means Clustering Validity Function Based on Multiple Clustering Performance Evaluation Components
    Wang, Guan
    Wang, Jie-Sheng
    Wang, Hong-Yu
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2022, 24 (04) : 1859 - 1887
  • [37] Evidence Accumulation Clustering with Possibilitic Fuzzy C-Means base clustering approach to disease diagnosis
    Iliyasu, Abdullah M.
    Fatichah, Chastine
    Abuhasel, Khaled A.
    AUTOMATIKA, 2016, 57 (03) : 822 - 835
  • [38] Clustering Aluminum Smelting Potlines Using Fuzzy C-Means and K-Means Algorithms
    de Lima, Flavia A. N.
    de Souza, Alan M. F.
    Soares, Fabio M.
    Cardoso, Diego Lisboa
    de Oliveira, Roberto C. L.
    LIGHT METALS 2017, 2017, : 589 - 597
  • [39] FuzzyCSampling: A Hybrid fuzzy c-means clustering sampling strategy for imbalanced datasets
    Maras, Abdullah
    Selcukcan Erol, Cigdem
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2023, 31 (07) : 1223 - 1236
  • [40] Using Fuzzy C-Means Clustering to Determine First Arrival of Microseismic Recordings
    Zhao, Xiangyun
    Chen, Haihang
    Li, Binhong
    Yang, Zhen
    Li, Huailiang
    SENSORS, 2024, 24 (05)