Hard versus fuzzy c-means clustering for color quantization

被引:34
|
作者
Wen, Quan [2 ]
Celebi, M. Emre [1 ]
机构
[1] Louisiana State Univ, Dept Comp Sci, Shreveport, LA 71105 USA
[2] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 610054, Peoples R China
来源
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING | 2011年
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
K-MEANS; EDGE-DETECTION; ALGORITHM; SCHEME;
D O I
10.1186/1687-6180-2011-118
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Color quantization is an important operation with many applications in graphics and image processing. Most quantization methods are essentially based on data clustering algorithms. Recent studies have demonstrated the effectiveness of hard c-means (k-means) clustering algorithm in this domain. Other studies reported similar findings pertaining to the fuzzy c-means algorithm. Interestingly, none of these studies directly compared the two types of c-means algorithms. In this study, we implement fast and exact variants of the hard and fuzzy c-means algorithms with several initialization schemes and then compare the resulting quantizers on a diverse set of images. The results demonstrate that fuzzy c-means is significantly slower than hard c-means, and that with respect to output quality, the former algorithm is neither objectively nor subjectively superior to the latter.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Medical Image Segmentation based on Improved Fuzzy C-means Clustering
    Liu, Dongling
    Ma, Ling
    Chen, Hui
    Meng, Ke
    2017 INTERNATIONAL CONFERENCE ON SMART GRID AND ELECTRICAL AUTOMATION (ICSGEA), 2017, : 406 - 410
  • [22] Fuzzy c-means clustering based on weights and gene expression programming
    Jiang, Zhaohui
    Li, Tingting
    Min, Wenfang
    Qi, Zhao
    Rao, Yuan
    PATTERN RECOGNITION LETTERS, 2017, 90 : 1 - 7
  • [23] A novel approach to fuzzy c-Means clustering using kernel function
    Kochuveettil, Ani Davis
    Mathew, Raj
    INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2022, 16 (04): : 643 - 651
  • [24] A Performance Study of Probabilistic Possibilistic Fuzzy C-Means Clustering Algorithm
    Vijaya, J.
    Syed, Hussian
    ADVANCES IN COMPUTING AND DATA SCIENCES, PT I, 2021, 1440 : 431 - 442
  • [25] Deep Fuzzy Variable C-Means Clustering Incorporated With Curriculum Learning
    Gong, Maoguo
    Zhao, Yue
    Li, Hao
    Qin, A. K.
    Xing, Lining
    Li, Jianzhao
    Liu, Yiting
    Liu, Yuhao
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2023, 31 (12) : 4321 - 4335
  • [26] Fuzzy C-Means Clustering: A Review of Applications in Breast Cancer Detection
    Krasnov, Daniel
    Davis, Dresya
    Malott, Keiran
    Chen, Yiting
    Shi, Xiaoping
    Wong, Augustine
    ENTROPY, 2023, 25 (07)
  • [27] General fuzzy C-means clustering algorithm using Minkowski metric
    Zhao, Kaixin
    Dai, Yaping
    Jia, Zhiyang
    Ji, Ye
    SIGNAL PROCESSING, 2021, 188
  • [28] Fuzzy C-Means Clustering via Slime Mold and the Fisher Score
    Zhang, Yiman
    Sun, Lin
    Chang, Baofang
    Zhang, Qianqian
    Xu, Jiucheng
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2025, 27 (02) : 606 - 628
  • [29] A Hybrid Chaos and Fuzzy C-Means Clustering Technique for Watermarking Authentication
    Hamouda, Kamal
    Elmogy, Mohammed
    El-Desouky, B. S.
    ADVANCED MACHINE LEARNING TECHNOLOGIES AND APPLICATIONS, AMLTA 2014, 2014, 488 : 165 - 176
  • [30] UNSUPERVISED FUZZY C-MEANS CLUSTERING FOR MOTOR IMAGERY EEG RECOGNITION
    Hsu, Wei-Yen
    Lin, Chi-Yuan
    Kuo, Wen-Feng
    Liou, Michelle
    Sun, Yung-Nien
    Tsai, Arthur Chih-Hsin
    Hsu, Hsien-Jen
    Chen, Po-Hsun
    Chen, I-Ru
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2011, 7 (08): : 4965 - 4976