ON UNIQUENESS OF KERR SPACE-TIME NEAR NULL INFINITY

被引:0
作者
Wu, Xiaoning [1 ]
机构
[1] Chinese Acad Sci, Inst Math, Acad Math & Syst Sci, Beijing 100080, Peoples R China
来源
GRAVITATION AND ASTROPHYSICS | 2010年
关键词
Kerr solution; Uniqueness Theorem; INITIAL-VALUE-PROBLEM; VACUUM FIELD-EQUATIONS; GENERAL-RELATIVITY; STATIONARY SPACETIMES;
D O I
10.1142/9789814307673_0015
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We re-express the Kerr metric in standard Bondi-Saches' coordinate near null infinity I+. Using the uniqueness result of characteristic initial value problem, we prove the Kerr metric is the only asymptotic flat, stationary, axial symmetric, algebraic special solution of vacuum Einstein equation.
引用
收藏
页码:150 / 161
页数:12
相关论文
共 20 条
[1]  
[Anonymous], 1986, SPINORS SPACE TIME, DOI DOI 10.1017/CBO9780511524486
[2]  
[Anonymous], 1986, Spinors and Space-Time
[3]  
[Anonymous], EXACT SOLUTIONS EINS
[4]   GRAVITATIONAL WAVES IN GENERAL RELATIVITY .7. WAVES FROM AXI-SYMMETRIC ISOLATED SYSTEMS [J].
BONDI, H ;
VANDERBU.MG ;
METZNER, AWK .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1962, 269 (1336) :21-&
[5]   CHARACTERISTIC INITIAL VALUE-PROBLEM FOR DEVELOPMENT OF A KERR SOLUTION [J].
CHELLONE, DS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1975, 8 (01) :1-5
[6]   Initial data for stationary spacetimes near spacelike infinity [J].
Dain, S .
CLASSICAL AND QUANTUM GRAVITY, 2001, 18 (20) :4329-4338
[7]   RELIABILITY OF PERTURBATION-THEORY IN GENERAL-RELATIVITY [J].
DAMOUR, T ;
SCHMIDT, B .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (10) :2441-2453
[8]   ON THE REGULAR AND THE ASYMPTOTIC CHARACTERISTIC INITIAL VALUE-PROBLEM FOR EINSTEIN VACUUM FIELD-EQUATIONS [J].
FRIEDRICH, H .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1981, 375 (1761) :169-184
[9]  
FRIEDRICH H, 1981, P ROY SOC LOND A MAT, V378, P401, DOI 10.1098/rspa.1981.0159
[10]   Static vacuum solutions from convergent null data expansions at space-like infinity [J].
Friedrich, Helmut .
ANNALES HENRI POINCARE, 2007, 8 (05) :817-884