The numerical equivalence relation for height functions and ampleness and nefness criteria for divisors

被引:3
作者
Lee, Chong Gyu [1 ]
机构
[1] Univ Illinois, Dept Math, Chicago, IL 60607 USA
关键词
D O I
10.1112/blms/bds023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study properties of Weil height functions associated with numerically trivial divisors. It helps us to define the fractional limit of h(E) with respect to h(D) on U, with D ample: Flim(D)(E, U) := liminf(P is an element of UhD(P)->infinity) h(E)(P)/h(D)(P). The value of Flim(D)(E, U) contains numerical information about a divisor E, enough to determine whether E is ample, numerically effective (nef) or pseudo-effective.
引用
收藏
页码:944 / 960
页数:17
相关论文
共 14 条
[1]  
[Anonymous], 1998, ERGEBNISSE MATH IHRE
[2]  
Boucksom P., 2004, ARXIVMATH0405285
[3]  
Debarre O., 2001, UNIVERSITEX
[4]  
Demailly JP, 2001, ICTP LECT NOTES, V6, P1
[5]  
Hartshorne S., 1977, GRADUATE TEXTS MATH, V52
[6]  
HINDRY M, 2000, GRAD TEXT M, V201, P1
[7]   TOWARD A NUMERICAL THEORY OF AMPLENESS [J].
KLEIMAN, SL .
ANNALS OF MATHEMATICS, 1966, 84 (02) :293-&
[8]  
Lang S., 1983, Fundamentals of Diophantine geometry, DOI 10.1007/978-1-4757-1810-2
[9]  
Lang S., 1959, Interscience Tracts in Pure and Applied Mathematics, V7
[10]  
Lazarsfeld R., 2004, ERGEBNISSE MATH IHRE, V3