Genuine-optimal circulant preconditioners for Wiener-Hopf equations

被引:0
作者
Lin, FR [1 ]
机构
[1] Shantou Univ, Dept Math, Shantou 515063, Peoples R China
关键词
Wiener-Hopf equations; circulant preconditioner; preconditioned conjugate; gradient method; quadrature rules; Hilbert-Schmidt norm;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we construct the genuine-optimal circulant preconditioner for finite-section Wiener-Hopf equations. The genuine-optimal circulant preconditioner is defined as the minimizer of Hilbert-Schmidt norm over certain integral operators. We prove that the difference between the genuine-optimal circulant preconditioner and the original integral operator is the sum of a small norm operator and a finite rank operator. Thus, the preconditioned conjugate gradient (PCG) method, when applied to solve the preconditioned equations, converges superlinearly. Finally, we give an efficient algorithm for the solution of Wiener-Hopf equation discretized by high order quadrature rules.
引用
收藏
页码:629 / 638
页数:10
相关论文
共 14 条
[1]  
Axelsson O., 1984, Finite Element Solution of Boundary Value Problems: Theory and Computation
[3]  
Chan RH, 1996, J COMPUT MATH, V14, P223
[4]   AN OPTIMAL CIRCULANT PRECONDITIONER FOR TOEPLITZ-SYSTEMS [J].
CHAN, TF .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1988, 9 (04) :766-771
[5]  
Davis PJ., 1979, Circulant Matrices
[6]   FAST PRECONDITIONED CONJUGATE-GRADIENT ALGORITHMS FOR WIENER-HOPF INTEGRAL-EQUATIONS [J].
GOHBERG, I ;
HANKE, M ;
KOLTRACHT, I .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (02) :429-443
[7]  
Gohberg I., 1981, BASIC OPERATOR THEOR
[8]  
Green C. D., 1969, Integral Equation Methods
[9]   SOME ASPECTS OF CIRCULANT PRECONDITIONERS [J].
HUCKLE, T .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (03) :531-541