Threshold stopping rules for diffusion processes and Stefan's problem

被引:2
作者
Arkin, V. I. [1 ]
Slastnikov, A. D. [1 ]
机构
[1] Russian Acad Sci, Cent Econ & Math Inst, Moscow 117418, Russia
基金
俄罗斯基础研究基金会;
关键词
Payoff Function; DOKLADY Mathematic; Geometric Brownian Motion; Threshold Strategy; Neighbor Hood;
D O I
10.1134/S106456241204031X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:626 / 629
页数:4
相关论文
共 12 条
[1]   Reward functionals, salvage values, and optimal stopping [J].
Alvarez, LHR .
MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2001, 54 (02) :315-337
[2]  
[Anonymous], HDB BROWNIAN MOTION
[3]   A VARIATIONAL APPROACH TO OPTIMAL STOPPING PROBLEMS FOR DIFFUSION PROCESSES [J].
Arkin, V. I. ;
Slastnikov, A. D. .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 2009, 53 (03) :467-480
[4]   On the optimal stopping problem for one-dimensional diffusions [J].
Dayanik, S ;
Karatzas, L .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2003, 107 (02) :173-212
[5]   INVESTMENT UNDER UNCERTAINTY - DIXIT,AK, PINDYCK,RS [J].
SCHWARTZ, ES .
JOURNAL OF FINANCE, 1994, 49 (05) :1924-1928
[6]   Some optimal stopping problems with nontrivial boundaries for pricing exotic options [J].
Guo, X ;
Shepp, L .
JOURNAL OF APPLIED PROBABILITY, 2001, 38 (03) :647-658
[7]   Optimal time to invest when the price processes are geometric Brownian motions [J].
Yaozhong Hu ;
Bernt Øksendal .
Finance and Stochastics, 1998, 2 (3) :295-310
[8]  
Jonsson H., 2004, THEORY PROB MATH STA, V71, P113
[9]  
Oksendal B., 2013, STOCHASTIC DIFFERENT
[10]  
Peskir G., 2006, LEC MATH, DOI 10.1007/978-3-7643-7390-0