WHITNEY-TYPE EXTENSIONS IN QUASI-METRIC SPACES

被引:6
作者
Alvarado, Ryan [1 ]
Mitrea, Irina [2 ]
Mitrea, Marius [1 ]
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Temple Univ, Dept Math, Philadelphia, PA 19122 USA
基金
美国国家科学基金会;
关键词
Quasi-metric space; geometrically doubling quasi-metric space; extension of Holder functions; extension of Lipschitz functions; quasi-metric space; metrization; Holder functions; Lipschitz functions; partition of unity; Whitney extension; quantitative Urysohn lemma; Whitney decomposition;
D O I
10.3934/cpaa.2013.12.59
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss geometrical scenarios guaranteeing that functions defined on a given set may be extended to the entire ambient, with preservation of the class of regularity. This extends to arbitrary quasi-metric spaces work done by E.J. McShane in the context of metric spaces, and to geometrically doubling quasi-metric spaces work done by H. Whitney in the Euclidean setting. These generalizations are quantitatively sharp.
引用
收藏
页码:59 / 88
页数:30
相关论文
共 31 条
[1]  
[Anonymous], 1943, Bull. Am. Math. Soc, DOI DOI 10.1090/S0002-9904-1943-07859-7
[2]  
[Anonymous], 1971, Lecture Notes in Mathematics
[3]  
[Anonymous], 1970, SINGULAR INTEGRALS D
[4]  
[Anonymous], 1958, Ark. Mat., DOI 10.1007/BF02589517
[5]  
Aoki T., 1942, P IMP ACAD TOKYO, V18, P588, DOI DOI 10.3792/PIA/1195573733
[6]   Whitney's extension problem for multivariate C1,w-functions [J].
Brudnyi, Y ;
Shvartsman, P .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (06) :2487-2512
[7]  
Chen L., ARXIV10103299V1
[8]  
Chen L., ARXIV10053727V1
[9]   EXTENSIONS OF HARDY SPACES AND THEIR USE IN ANALYSIS [J].
COIFMAN, RR ;
WEISS, G .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 83 (04) :569-645
[10]  
Engelking R., 1989, General topology