Effect of Dimensionality on the Photocatalytic Behavior of Carbon-Titania Nanosheet Composites: Charge Transfer at Nanomaterial Interfaces

被引:167
作者
Liang, Yu Teng [4 ]
Vijayan, Baiju K. [1 ]
Lyandres, Olga [1 ]
Gray, Kimberly A. [1 ]
Hersam, Mark C. [2 ,3 ,4 ]
机构
[1] Northwestern Univ, Dept Civil & Environm Engn, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[3] Northwestern Univ, Dept Med, Evanston, IL 60208 USA
[4] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
TIO2-GRAPHENE NANOCOMPOSITES; GRAPHENE; TRANSISTORS; PERCENTAGE; REDUCTION; DEFECTS; ANATASE; SHAPE; CO2;
D O I
10.1021/jz300491s
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Due to their unique optoelectronic structure and large specific surface area, carbon nanomaterials have been integrated with titania to enhance photocatalysis. In particular, recent work has shown that nanocomposite photocatalytic performance can be improved by minimizing the covalent defect density of the carbon component. Herein, carbon nanotube-titania nanosheet and graphene-titania nanosheet composites with low carbon defect densities are compared to investigate the role of carbon nanomaterial dimensionality on photocatalytic response. The resulting 2D-2D graphene-titania nanosheet composites yield superior electronic coupling compared to 1D-2D carbon nanotube-titania nanosheet composites, leading to greater enhancement factors for CO2 photoreduction under ultraviolet irradiation. On the other hand, 1D carbon nanotubes are shown to be more effective titania photosensitizers, leading to greater photoactivity enhancement factors under visible illumination. Overall, this work suggests that carbon nanomaterial dimensionality is a key factor in determining the spectral response and reaction specificity of carbon-titania nanosheet composite photocatalysts.
引用
收藏
页码:1760 / 1765
页数:6
相关论文
共 41 条
[1]   Photoluminescence of anatase and rutile TiO2 particles [J].
Abazovic, Nadica D. ;
Comor, Mirjana I. ;
Dramicanin, Miroslav D. ;
Jovanovic, Dragana J. ;
Ahrenkiel, S. Phillip ;
Nedeljkovic, Jovan M. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (50) :25366-25370
[2]   GRAPHENE Pushing the boundaries [J].
Ajayan, Pulickel M. ;
Yakobson, Boris I. .
NATURE MATERIALS, 2011, 10 (06) :415-417
[3]   Graphene-based photocatalytic composites [J].
An, Xiaoqiang ;
Yu, Jimmy C. .
RSC ADVANCES, 2011, 1 (08) :1426-1434
[4]   Covalent chemistry of single-wall carbon nanotubes [J].
Bahr, JL ;
Tour, JM .
JOURNAL OF MATERIALS CHEMISTRY, 2002, 12 (07) :1952-1958
[5]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726
[6]   Hybrid Graphene/Titania Nanocomposite: Interface Charge Transfer, Hole Doping, and Sensitization for Visible Light Response [J].
Du, Aijun ;
Ng, Yun Hau ;
Bell, Nicholas J. ;
Zhu, Zhonghua ;
Amal, Rose ;
Smith, Sean C. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (08) :894-899
[7]   Thin Film Nanotube Transistors Based on Self-Assembled, Aligned, Semiconducting Carbon Nanotube Arrays [J].
Engel, Michael ;
Small, Joshua P. ;
Steiner, Mathias ;
Freitag, Marcus ;
Green, Alexander A. ;
Hersam, Mark C. ;
Avouris, Phaedon .
ACS NANO, 2008, 2 (12) :2445-2452
[8]   Emerging Methods for Producing Monodisperse Graphene Dispersions [J].
Green, Alexander A. ;
Hersam, Mark C. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (02) :544-549
[9]   Synthesis of Titania Nanosheets with a High Percentage of Exposed (001) Facets and Related Photocatalytic Properties [J].
Han, Xiguang ;
Kuang, Qin ;
Jin, Mingshang ;
Xie, Zhaoxiong ;
Zheng, Lansun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (09) :3152-+
[10]   Progress towards monodisperse single-walled carbon nanotubes [J].
Hersam, Mark C. .
NATURE NANOTECHNOLOGY, 2008, 3 (07) :387-394