Domination problem for AM-compact abstract Uryson operators

被引:17
作者
Orlov, Vladimir [1 ]
Pliev, Marat [2 ,3 ]
Rode, Dmitry [1 ]
机构
[1] Voronezh State Univ, Univ Skaya Pl, Voronezh 394006, Russia
[2] Russian Acad Sci, Southern Math Inst, Str Markusa 22, Vladikavkaz 362027, Russia
[3] Peoples Friendship Univ Russia, M Maklaya Str 6, Moscow 117198, Russia
基金
俄罗斯科学基金会; 俄罗斯基础研究基金会;
关键词
Orthogonally additive operators; Abstract Uryson operators; AM-compact operators; Fragments; Vector lattices; Domination problem;
D O I
10.1007/s00013-016-0937-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Boolean algebra of fragments of a positive abstract Uryson operator recently was described in M. Pliev (Positivity, doi:10.1007/s11117-016-0401-9, 2016). Using this result, we prove a theorem of domination for AM-compact positive abstract Uryson operators from a Dedekind complete vector lattice E to a Banach lattice F with an order continuous norm.
引用
收藏
页码:543 / 552
页数:10
相关论文
共 15 条
[1]  
ABASOV N., 2015, INT J MATH ANAL, V9, P2211
[2]  
Aliprantis C. D., 2006, POSITIVE OPERATORS
[3]  
Ben Amor M. A., 2013, Int. J. Math. Anal. (Ruse), V7, P2853
[4]   COMPACT-OPERATORS IN BANACH-LATTICES [J].
DODDS, PG ;
FREMLIN, DH .
ISRAEL JOURNAL OF MATHEMATICS, 1979, 34 (04) :287-320
[5]  
Gumenchuk AV., 2014, MAT STUD, V41, P214
[6]  
Kusraev A G, 2000, DOMINATED OPERATORS
[7]  
Kusraev A. G., 1999, VLADIKAVKAZ MATH J, V4, P22
[8]  
Kusraev A. G., 1999, VLADIKAVKAZ MATH J, V3, P33
[9]  
MAZON J. M., 1990, MATH PURES APPL, V35, P431
[10]  
MAZON J. M., 1990, MATH PURES APPL, V35, P329