Generalized multivariate Birnbaum-Saunders distributions and related inferential issues

被引:37
作者
Kundu, Debasis [1 ]
Balakrishnan, N. [2 ]
Jamalizadeh, Ahad [3 ]
机构
[1] Indian Inst Technol Kanpur, Dept Math & Stat, Pin 208016, India
[2] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
[3] Shahid Bahonar Univ Kerman, Fac Math & Comp, Dept Stat, Kerman 7616914111, Iran
关键词
Birnbaum-Saunders distribution; Generalized Birnbaum-Saunders distribution; Maximum likelihood estimators; Fisher information matrix; Asymptotic distribution; Monte Carlo simulation; Multivariate normal distribution; Elliptically symmetric distribution; Akaike information criterion; LIFE DISTRIBUTIONS; HAZARD RATE; FAMILY;
D O I
10.1016/j.jmva.2012.10.017
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Birnbaum and Saunders introduced in 1969 a two-parameter lifetime distribution which has been used quite successfully to model a wide variety of univariate positively skewed data. Diaz-Garcia and Leiva-Sanchez [8] proposed a generalized Birnbaum-Saunders distribution by using an elliptically symmetric distribution in place of the normal distribution. Recently, Kundu et al. [13] introduced a bivariate Birnbaum-Saunders distribution, based on a transformation of a bivariate normal distribution, and discussed its properties and associated inferential issues. In this paper, we construct a generalized multivariate Birnbaum-Saunders distribution, by using the multivariate elliptically symmetric distribution as a base kernel for the transformation instead of the multivariate normal distribution. Different properties of this distribution are obtained in the general case. Special emphasis is placed on statistical inference for two particular cases: (i) multivariate normal kernel and (ii) multivariate-t kernels. We use the maximized log-likelihood values for selecting the best kernel function. Finally, a data analysis is presented for illustrative purposes. (C) 2013 Published by Elsevier Inc.
引用
收藏
页码:230 / 244
页数:15
相关论文
共 50 条
[21]   THE TRANSMUTED BIRNBAUM-SAUNDERS DISTRIBUTION [J].
Bourguignon, Marcelo ;
Leao, Jeremias ;
Leiva, Victor ;
Santos-Neto, Manoel .
REVSTAT-STATISTICAL JOURNAL, 2017, 15 (04) :601-628
[22]   Flexible Birnbaum-Saunders Distribution [J].
Martinez-Florez, Guillermo ;
Barranco-Chamorro, Inmaculada ;
Bolfarine, Heleno ;
Gomez, Hector W. .
SYMMETRY-BASEL, 2019, 11 (10)
[23]   Bayesian Estimation for the Coefficients of Variation of Birnbaum-Saunders Distributions [J].
Puggard, Wisunee ;
Niwitpong, Sa-Aat ;
Niwitpong, Suparat .
SYMMETRY-BASEL, 2021, 13 (11)
[24]   On scale-mixture Birnbaum-Saunders distributions [J].
Patriota, Alexandre G. .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (07) :2221-2226
[25]   Objective Bayesian inference for Birnbaum-Saunders distributions [J].
Kang, Sang Gil ;
Kim, Yongku .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2025,
[26]   Fiducial inference for Birnbaum-Saunders distribution [J].
Li, Yalan ;
Xu, Ancha .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (09) :1673-1685
[27]   Estimation in generalized bivariate Birnbaum-Saunders models [J].
Saulo, Helton ;
Balakrishnan, N. ;
Zhu, Xiaojun ;
Gonzales, Jhon F. B. ;
Leao, Jeremias .
METRIKA, 2017, 80 (04) :427-453
[28]   Modified slash Birnbaum-Saunders distribution [J].
Reyes, Jimmy ;
Vilca, Filidor ;
Gallardo, Diego I. ;
Gomez, Hector W. .
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2017, 46 (05) :969-984
[29]   A new extension of the Birnbaum-Saunders distribution [J].
Lemonte, Artur J. .
BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2013, 27 (02) :133-149
[30]   A bivariate Birnbaum-Saunders regression model [J].
Vilca, Filidor ;
Romeiro, Renata G. ;
Balakrishnan, N. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 97 :169-183