Some insights into the regularization of ill-posed problems

被引:1
作者
Hanckowiak, J [1 ]
机构
[1] Tech Univ Zielona Gora, Dept Mech Engn, PL-65016 Zielona Gora, Poland
关键词
error vector; regularization parameter;
D O I
10.1155/S1024123X99001040
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper a simple introduction to the problem of the regularization of ill-posed problems (IPP) is presented. We describe three regularization methods with simple examples which illustrate the principle that for "bad" equations it is unprofitable to carry out exact computations.
引用
收藏
页码:161 / 171
页数:11
相关论文
共 15 条
[1]  
ALIFANOV OM, 1988, EXTREMAL METHODS SOL
[2]  
[Anonymous], 1987, STOCHASTIC PROCESSES
[3]   INTRINSIC IRREVERSIBILITY AND INTEGRABILITY OF DYNAMICS [J].
ANTONIOU, IE ;
PRIGOGINE, I .
PHYSICA A, 1993, 192 (03) :443-464
[4]  
BAKUSHINCKIY AB, 1989, ITERATIVE METHODS SO
[5]  
CHENEY M, 1997, AM SCI SEP, P448
[6]  
GLASKO VB, 1984, INVESE PROBLEMS MATH
[7]   IN SEARCH OF PHYSICAL SOLUTIONS IN QUANTUM-FIELD THEORY [J].
HANCKOWIAK, J .
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1992, 40 (06) :593-614
[8]  
HANCKOWIAK J, 1992, J MATH PHYS, V33, P1132, DOI 10.1063/1.529778
[9]   THEORETICAL MECHANICS ANALYSIS OF COUPLED EQUATIONS FOR N-POINT FUNCTIONS [J].
HANCKOWIAK, J .
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1994, 42 (03) :281-300
[10]  
HANCKOWIAK J, 1997, NEWTONIAN DYNAMICS K