An archaeal origin of eukaryotes supports only two primary domains of life

被引:339
作者
Williams, Tom A. [1 ]
Foster, Peter G. [2 ]
Cox, Cymon J. [3 ]
Embley, T. Martin [1 ]
机构
[1] Univ Newcastle, Inst Cell & Mol Biosci, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England
[2] Nat Hist Museum, Dept Life Sci, London SW7 5BD, England
[3] Univ Algarve, Ctr Ciencias Mar, P-8005139 Faro, Portugal
基金
英国惠康基金; 欧洲研究理事会;
关键词
ARCHAEBACTERIAL ORIGIN; EVOLUTIONARY TREES; EUBACTERIAL GENES; RNA-POLYMERASES; CELL-DIVISION; RIBOSOMAL-RNA; GENOME; SEQUENCE; PHYLOGENY; CRENARCHAEOTA;
D O I
10.1038/nature12779
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The discovery of the Archaea and the proposal of the three-domains 'universal' tree, based on ribosomal RNA and core genes mainly involved in protein translation, catalysed new ideas for cellular evolution and eukaryotic origins. However, accumulating evidence suggests that the three-domains tree may be incorrect: evolutionary trees made using newer methods place eukaryotic core genes within the Archaea, supporting hypotheses in which an archaeon participated in eukaryotic origins by founding the host lineage for the mitochondrial endosymbiont. These results provide support for only two primary domains of life-Archaea and Bacteria-because eukaryotes arose through partnership between them.
引用
收藏
页码:231 / 236
页数:6
相关论文
共 109 条
[1]   Controls on development and diversity of Early Archean stromatolites [J].
Allwood, Abigail C. ;
Grotzinger, John P. ;
Knoll, Andrew H. ;
Burch, Ian W. ;
Anderson, Mark S. ;
Coleman, Max L. ;
Kanik, Isik .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (24) :9548-9555
[2]   Patterns of prokaryotic lateral gene transfers affecting parasitic microbial eukaryotes [J].
Alsmark, Cecilia ;
Foster, Peter G. ;
Sicheritz-Ponten, Thomas ;
Nakjang, Sirintra ;
Embley, T. Martin ;
Hirt, Robert P. .
GENOME BIOLOGY, 2013, 14 (02)
[3]   The genome sequence of Rickettsia prowazekii and the origin of mitochondria [J].
Andersson, SGE ;
Zomorodipour, A ;
Andersson, JO ;
Sicheritz-Pontén, T ;
Alsmark, UCM ;
Podowski, RM ;
Näslund, AK ;
Eriksson, AS ;
Winkler, HH ;
Kurland, CG .
NATURE, 1998, 396 (6707) :133-140
[4]   Identification of an ortholog of the eukaryotic RNA polymerase III subunit RPC34 in Crenarchaeota and Thaumarchaeota suggests specialization of RNA polymerases for coding and non-coding RNAs in Archaea [J].
Blombach, Fabian ;
Makarova, Kira S. ;
Marrero, Jeannette ;
Siebers, Bettina ;
Koonin, Eugene V. ;
van der Oost, John .
BIOLOGY DIRECT, 2009, 4 :39
[5]   Origins and evolution of isoprenoid lipid biosynthesis in archaea [J].
Boucher, Y ;
Kamekura, M ;
Doolittle, WF .
MOLECULAR MICROBIOLOGY, 2004, 52 (02) :515-527
[6]   Genome-scale coestimation of species and gene trees [J].
Boussau, Bastien ;
Szoellosi, Gergely J. ;
Duret, Laurent ;
Gouy, Manolo ;
Tannier, Eric ;
Daubin, Vincent .
GENOME RESEARCH, 2013, 23 (02) :323-330
[7]   Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota [J].
Brochier-Armanet, Celine ;
Boussau, Bastien ;
Gribaldo, Simonetta ;
Forterre, Patrick .
NATURE REVIEWS MICROBIOLOGY, 2008, 6 (03) :245-252
[8]   Archean molecular fossils and the early rise of eukaryotes [J].
Brocks, JJ ;
Logan, GA ;
Buick, R ;
Summons, RE .
SCIENCE, 1999, 285 (5430) :1033-1036
[9]   Universal trees based on large combined protein sequence data sets [J].
Brown, JR ;
Douady, CJ ;
Italia, MJ ;
Marshall, WE ;
Stanhope, MJ .
NATURE GENETICS, 2001, 28 (03) :281-285
[10]  
Butterfield NJ, 2000, PALEOBIOLOGY, V26, P386, DOI 10.1666/0094-8373(2000)026<0386:BPNGNS>2.0.CO