Multidimensional stability of traveling fronts in monostable reaction-diffusion equations with complex perturbations

被引:10
作者
Zeng HuiHui [1 ]
机构
[1] Tsinghua Univ, Ctr Math Sci, Beijing 100084, Peoples R China
基金
美国国家科学基金会;
关键词
traveling fronts; reaction-diffusion equations; multi-dimensional stability; NONLINEAR STABILITY; WAVES;
D O I
10.1007/s11425-013-4617-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the multidimensional stability of traveling fronts in monostable reaction-diffusion equations, including Ginzburg-Landau equations and Fisher-KPP equations. Eckmann andWayne (1994) showed a one-dimensional stability result of traveling fronts with speeds c a (c) 1/2 c (*) (the critical speed) under complex perturbations. In the present work, we prove that these traveling fronts are also asymptotically stable subject to complex perturbations in multiple space dimensions (n = 2, 3), employing weighted energy methods.
引用
收藏
页码:353 / 366
页数:14
相关论文
共 24 条
[1]  
Adams R.A., 1975, Pure and Applied Mathematics, V65
[2]  
[Anonymous], 1937, Bull. Univ. Mosc. Ser. Int. A, DOI DOI 10.1016/B978-0-08-092523-3.50014-9
[3]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[4]   STABILITY OF MOVING FRONTS IN THE GINZBURG-LANDAU EQUATION [J].
BRICMONT, J ;
KUPIAINEN, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 159 (02) :287-318
[5]   THE TIME-DEPENDENT AMPLITUDE EQUATION FOR THE SWIFT-HOHENBERG PROBLEM [J].
COLLET, P ;
ECKMANN, JP .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 132 (01) :139-153
[6]   FRONT SOLUTIONS FOR THE GINZBURG-LANDAU EQUATION [J].
ECKMANN, JP ;
GALLAY, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 152 (02) :221-248
[7]   THE NONLINEAR STABILITY OF FRONT SOLUTIONS FOR PARABOLIC PARTIAL-DIFFERENTIAL EQUATIONS [J].
ECKMANN, JP ;
WAYNE, CE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 161 (02) :323-334
[8]   The wave of advance of advantageous genes [J].
Fisher, RA .
ANNALS OF EUGENICS, 1937, 7 :355-369
[9]   LOCAL STABILITY OF CRITICAL FRONTS IN NONLINEAR PARABOLIC PARTIAL-DIFFERENTIAL EQUATIONS [J].
GALLAY, T .
NONLINEARITY, 1994, 7 (03) :741-764