Bayesian estimation of a flexible bifactor generalized partial credit model to survey data

被引:10
|
作者
da Silva, Marcelo A. [1 ,2 ]
Huggins-Manley, Anne C. [3 ]
Mazzon, Jose A. [4 ]
Bazan, Jorge L. [5 ]
机构
[1] Univ Sao Paulo, Interinst Grad Program Stat, Sao Carlos, SP, Brazil
[2] Univ Fed Sao Carlos, Sao Carlos, SP, Brazil
[3] Univ Florida, Coll Educ, Gainesville, FL USA
[4] Univ Sao Paulo, Fac Econ Adm & Contabilidade, Sao Paulo, Brazil
[5] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
Bayesian estimation; bifactor generalized partial credit model; link functions; multidimensional IRT; No-U-Turn Hamiltonian Monte Carlo; polytomous response; survey data; INFORMATION-TECHNOLOGY; CROSS-VALIDATION; MOBILE BANKING; ACCEPTANCE;
D O I
10.1080/02664763.2019.1592125
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Item response theory (IRT) models provide an important contribution in the analysis of polytomous items, such as Likert scale items in survey data. We propose a bifactor generalized partial credit model (bifac-GPC model) with flexible link functions - probit, logit and complementary log-log - for use in analysis of ordered polytomous item scale data. In order to estimate the parameters of the proposed model, we use a Bayesian approach through the NUTS algorithm and show the advantages of implementing IRT models through the Stan language. We present an application to marketing scale data. Specifically, we apply the model to a dataset of non-users of a mobile banking service in order to highlight the advantages of this model. The results show important managerial implications resulting from consumer perceptions. We provide a discussion of the methodology for this type of data and extensions. Codes are available for practitioners and researchers to replicate the application.
引用
收藏
页码:2372 / 2387
页数:16
相关论文
共 31 条
  • [31] Improved estimation of yaw angle and surface pressure distribution of Ahmed model with optimized sparse sensors by Bayesian framework based on pressure-sensitive paint data
    Inoba, Ryoma
    Uchida, Kazuki
    Iwasaki, Yuto
    Yamada, Keigo
    Jebli, Ayoub
    Nagata, Takayuki
    Ozawa, Yuta
    Nonomura, Taku
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2024, 156