Bayesian estimation of a flexible bifactor generalized partial credit model to survey data
被引:10
|
作者:
da Silva, Marcelo A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Interinst Grad Program Stat, Sao Carlos, SP, Brazil
Univ Fed Sao Carlos, Sao Carlos, SP, BrazilUniv Sao Paulo, Interinst Grad Program Stat, Sao Carlos, SP, Brazil
da Silva, Marcelo A.
[1
,2
]
Huggins-Manley, Anne C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Florida, Coll Educ, Gainesville, FL USAUniv Sao Paulo, Interinst Grad Program Stat, Sao Carlos, SP, Brazil
Huggins-Manley, Anne C.
[3
]
Mazzon, Jose A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Fac Econ Adm & Contabilidade, Sao Paulo, BrazilUniv Sao Paulo, Interinst Grad Program Stat, Sao Carlos, SP, Brazil
Mazzon, Jose A.
[4
]
Bazan, Jorge L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Inst Ciencias Matemat & Comp, Sao Paulo, BrazilUniv Sao Paulo, Interinst Grad Program Stat, Sao Carlos, SP, Brazil
Bazan, Jorge L.
[5
]
机构:
[1] Univ Sao Paulo, Interinst Grad Program Stat, Sao Carlos, SP, Brazil
[2] Univ Fed Sao Carlos, Sao Carlos, SP, Brazil
[3] Univ Florida, Coll Educ, Gainesville, FL USA
[4] Univ Sao Paulo, Fac Econ Adm & Contabilidade, Sao Paulo, Brazil
[5] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Sao Paulo, Brazil
Bayesian estimation;
bifactor generalized partial credit model;
link functions;
multidimensional IRT;
No-U-Turn Hamiltonian Monte Carlo;
polytomous response;
survey data;
INFORMATION-TECHNOLOGY;
CROSS-VALIDATION;
MOBILE BANKING;
ACCEPTANCE;
D O I:
10.1080/02664763.2019.1592125
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
Item response theory (IRT) models provide an important contribution in the analysis of polytomous items, such as Likert scale items in survey data. We propose a bifactor generalized partial credit model (bifac-GPC model) with flexible link functions - probit, logit and complementary log-log - for use in analysis of ordered polytomous item scale data. In order to estimate the parameters of the proposed model, we use a Bayesian approach through the NUTS algorithm and show the advantages of implementing IRT models through the Stan language. We present an application to marketing scale data. Specifically, we apply the model to a dataset of non-users of a mobile banking service in order to highlight the advantages of this model. The results show important managerial implications resulting from consumer perceptions. We provide a discussion of the methodology for this type of data and extensions. Codes are available for practitioners and researchers to replicate the application.
机构:
Univ Michigan, Ann Arbor, MI USAUniv Michigan, Ann Arbor, MI USA
Cui, Chengyu
Wang, Chun
论文数: 0引用数: 0
h-index: 0
机构:
Univ Washington, Seattle, WA USA
Univ Washington, Coll Educ, 312 E Miller Hall,2012 Skagit Lane, Seattle, WA 98105 USAUniv Michigan, Ann Arbor, MI USA
Wang, Chun
Xu, Gongjun
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Ann Arbor, MI USA
Univ Michigan, Dept Stat, 456 West Hall,1085 South Univ, Ann Arbor, MI 48109 USAUniv Michigan, Ann Arbor, MI USA
机构:
Loyola Univ, Res Methodol Program, 820 N Michigan Ave, Chicago, IL 60611 USALoyola Univ, Res Methodol Program, 820 N Michigan Ave, Chicago, IL 60611 USA