A MACHINE LEARNING PIPELINE ARTICULATING SATELLITE IMAGERY AND OPENSTREETMAP FOR ROAD DETECTION

被引:1
|
作者
Zurbaran, M. A. [1 ]
Wightman, P. [2 ]
Brovelli, M. A. [1 ]
机构
[1] Politecn Milan, Dept Civil & Environm Engn, Piazza Leonardo da Vinci 32, I-20133 Milan, MI, Italy
[2] Univ Norte, Dept Syst Engn, Km 5 Via Pto Colombia, Atlantico, Colombia
来源
FOSS4G 2019 - ACADEMIC TRACK | 2019年 / 42-4卷 / W14期
关键词
Machine Learning; Artificial Intelligence; OpenStreetMap; Remote Sensing; Satellite Imagery;
D O I
10.5194/isprs-archives-XLII-4-W14-255-2019
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Satellite imagery from earth observation missions enable processing big data to gather information about the world. Automatizing the creation of maps that reflect ground truth is a desirable outcome that would aid decision makers to take adequate actions in alignment with the United Nations Sustainable Development Goals. In order to harness the power that the availability of the new generation of satellites enable, it is necessary to implement techniques capable of handling annotations for the massive volume and variability of high spatial resolution imagery for further processing. However, the availability of public datasets for training machine learning models for image segmentation plays an important role for scalability. This work focuses on bridging remote sensing and computer vision by providing an open source based pipeline for generating machine learning training datasets for road detection in an area of interest. The proposed pipeline addresses road detection as a binary classification problem using road annotations existing in OpenStreetMap for creating masks. For this case study, Planet images of 3m resolution are used for creating a training dataset for road detection in Kenya.
引用
收藏
页码:255 / 260
页数:6
相关论文
共 50 条
  • [21] A generalizable and accessible approach to machine learning with global satellite imagery
    Esther Rolf
    Jonathan Proctor
    Tamma Carleton
    Ian Bolliger
    Vaishaal Shankar
    Miyabi Ishihara
    Benjamin Recht
    Solomon Hsiang
    Nature Communications, 12
  • [22] A Machine Learning Approach to Objective Identification of Dust in Satellite Imagery
    Berndt, E. B.
    Elmer, N. J.
    Junod, R. A.
    Fuell, K. K.
    Harkema, S. S.
    Burke, A. R.
    Feemster, C. M.
    EARTH AND SPACE SCIENCE, 2021, 8 (06)
  • [23] A generalizable and accessible approach to machine learning with global satellite imagery
    Rolf, Esther
    Proctor, Jonathan
    Carleton, Tamma
    Bolliger, Ian
    Shankar, Vaishaal
    Ishihara, Miyabi
    Recht, Benjamin
    Hsiang, Solomon
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [24] Multispectral satellite imagery and machine learning for the extraction of shoreline indicators
    McAllister, Emma
    Payo, Andres
    Novellino, Alessandro
    Dolphin, Tony
    Medina-Lopez, Encarni
    COASTAL ENGINEERING, 2022, 174
  • [25] Automatic dataset builder for Machine Learning applications to satellite imagery
    Sebastianelli, Alessandro
    Del Rosso, Maria Pia
    Ullo, Silvia Liberata
    SOFTWAREX, 2021, 15
  • [26] Detecting Arsenic Contamination Using Satellite Imagery and Machine Learning
    Agrawal, Ayush
    Petersen, Mark R.
    TOXICS, 2021, 9 (12)
  • [27] Automatic dataset builder for Machine Learning applications to satellite imagery
    Sebastianelli, Alessandro
    Del Rosso, Maria Pia
    Ullo, Silvia Liberata
    SoftwareX, 2021, 15
  • [28] Water Clarity Assessment Through Satellite Imagery and Machine Learning
    Salas, Joaquin
    Sepulveda, Rodrigo
    Vera, Pablo
    WATER, 2025, 17 (02)
  • [29] Vineyard Segmentation from Satellite Imagery Using Machine Learning
    Santos, Luis
    Santos, Filipe N.
    Filipe, Vitor
    Shinde, Pranjali
    PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2019, PT I, 2019, 11804 : 109 - 120
  • [30] Road extraction with support vector machine from high resolution satellite imagery
    Ma, Li
    Yu, Hongjing
    Zhao, Lingli
    Li, Jiatian
    2008 PROCEEDINGS OF INFORMATION TECHNOLOGY AND ENVIRONMENTAL SYSTEM SCIENCES: ITESS 2008, VOL 4, 2008, : 1054 - 1057