A MACHINE LEARNING PIPELINE ARTICULATING SATELLITE IMAGERY AND OPENSTREETMAP FOR ROAD DETECTION

被引:1
|
作者
Zurbaran, M. A. [1 ]
Wightman, P. [2 ]
Brovelli, M. A. [1 ]
机构
[1] Politecn Milan, Dept Civil & Environm Engn, Piazza Leonardo da Vinci 32, I-20133 Milan, MI, Italy
[2] Univ Norte, Dept Syst Engn, Km 5 Via Pto Colombia, Atlantico, Colombia
来源
FOSS4G 2019 - ACADEMIC TRACK | 2019年 / 42-4卷 / W14期
关键词
Machine Learning; Artificial Intelligence; OpenStreetMap; Remote Sensing; Satellite Imagery;
D O I
10.5194/isprs-archives-XLII-4-W14-255-2019
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Satellite imagery from earth observation missions enable processing big data to gather information about the world. Automatizing the creation of maps that reflect ground truth is a desirable outcome that would aid decision makers to take adequate actions in alignment with the United Nations Sustainable Development Goals. In order to harness the power that the availability of the new generation of satellites enable, it is necessary to implement techniques capable of handling annotations for the massive volume and variability of high spatial resolution imagery for further processing. However, the availability of public datasets for training machine learning models for image segmentation plays an important role for scalability. This work focuses on bridging remote sensing and computer vision by providing an open source based pipeline for generating machine learning training datasets for road detection in an area of interest. The proposed pipeline addresses road detection as a binary classification problem using road annotations existing in OpenStreetMap for creating masks. For this case study, Planet images of 3m resolution are used for creating a training dataset for road detection in Kenya.
引用
收藏
页码:255 / 260
页数:6
相关论文
共 50 条
  • [1] MACHINE LEARNING BASED ROAD DETECTION FROM HIGH RESOLUTION IMAGERY
    Lv, Ye
    Wang, Guofeng
    Hu, Xiangyun
    XXIII ISPRS CONGRESS, COMMISSION III, 2016, 41 (B3): : 891 - 898
  • [2] Automatic Target Detection from Satellite Imagery Using Machine Learning
    Tahir, Arsalan
    Munawar, Hafiz Suliman
    Akram, Junaid
    Adil, Muhammad
    Ali, Shehryar
    Kouzani, Abbas Z.
    Mahmud, M. A. Pervez
    SENSORS, 2022, 22 (03)
  • [3] Flood Detection in Urban Areas Using Satellite Imagery and Machine Learning
    Tanim, Ahad Hasan
    McRae, Callum Blake
    Tavakol-Davani, Hassan
    Goharian, Erfan
    WATER, 2022, 14 (07)
  • [4] Automated Underground Water Leakage Detection with Machine Learning Analysis of Satellite Imagery
    Arabi, Shiva
    Grau, David
    CONSTRUCTION RESEARCH CONGRESS 2024: SUSTAINABILITY, RESILIENCE, INFRASTRUCTURE SYSTEMS, AND MATERIALS DESIGN IN CONSTRUCTION, 2024, : 741 - 750
  • [5] Oil spills: Detection and concentration estimation in satellite imagery, a machine learning approach
    Trujillo-Acatitla, Rubicel
    Tuxpan-Vargas, Jose
    Ovando-Vazquez, Cesare
    MARINE POLLUTION BULLETIN, 2022, 184
  • [6] Pumice Raft Detection Using Machine-Learning on Multispectral Satellite Imagery
    Zheng, Maggie
    Mittal, Tushar
    Fauria, Kristen E.
    Subramaniam, Ajit
    Jutzeler, Martin
    FRONTIERS IN EARTH SCIENCE, 2022, 10
  • [7] Mapping Road Surface Type of Kenya Using OpenStreetMap and High-resolution Google Satellite Imagery
    Qi Zhou
    Zixian Liu
    Zesheng Huang
    Scientific Data, 11
  • [8] Mapping Road Surface Type of Kenya Using OpenStreetMap and High-resolution Google Satellite Imagery
    Zhou, Qi
    Liu, Zixian
    Huang, Zesheng
    SCIENTIFIC DATA, 2024, 11 (01)
  • [9] Urban road network detection from satellite imagery
    Yagoub, MM
    2ND GRSS/ISPRS JOINT WORKSHOP ON REMOTE SENSING AND DATA FUSION OVER URBAN AREAS, 2003, : 288 - 293
  • [10] Low Cloud Detection in Multilayer Scenes Using Satellite Imagery with Machine Learning Methods
    Haynes, John M.
    Noh, Yoo-Jeong
    Miller, Steven D.
    Haynes, Katherine D.
    Ebert-Uphoff, Imme
    Heidinger, Andrew
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2022, 39 (03) : 319 - 334