Cell response to plasma electrolytic oxidation surface-modified low-modulus β-type titanium alloys

被引:19
作者
Tanase, C. E. [1 ]
Golozar, M. [2 ]
Best, S. M. [2 ]
Brooks, R. A. [1 ]
机构
[1] Univ Cambridge, Div Trauma & Orthopaed Surg, Cambridge CB2 0QQ, England
[2] Univ Cambridge, Dept Mat Sci & Met, Cambridge Ctr Med Mat, Cambridge CB3 0FS, England
关键词
Foetal human osteoblasts (fHOb); CD14(+) monocytes; Low modulus; beta-Type titanium alloys; Plasma electrolytic oxidation (PEO); REPLACE SELECT IMPLANTS; IN-VITRO; OSTEOBLAST ADHESION; PHASE-TRANSFORMATIONS; DENTAL IMPLANTS; BONE; OSSEOINTEGRATION; TOPOGRAPHY; IMPROVEMENT; COATINGS;
D O I
10.1016/j.colsurfb.2018.12.064
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Plasma electrolytic oxidation (PEO) has been demonstrated to be an effective surface treatment for enhancing the osteoconduction and osseointegration of commercially pure alpha-Ti (CP alpha-Ti) dental implant materials for clinical application. To explore the feasibility of extending the application of PEO to low-modulus beta-type titanium alloys for load-bearing orthopaedic implants, a thorough understanding of the effect of substrate material on the biological performance of the PEO-treated surface is required. A 10 kW 50 Hz KeroniteTM processing unit was used to modify the surface of low-modulus near beta-Ti13Nb13Zr and beta-Ti45Nb substrates. CP alpha-Ti and (alpha + beta)-Ti6Al4V were also used in parallel as reference materials. In vitro culture of foetal human osteoblast (fHOb) cells on PEO-treated low-modulus near beta-Ti13Nb13Zr and beta-Ti45Nb alloys revealed comparable behaviour to that seen with CP alpha-Ti and (alpha + beta)-Ti6Al4V with respect to metabolic activity, collagen production, matrix formation and matrix mineralisation. No difference was observed in TNF-alpha and IL-10 cytokine release from CD14(+) monocytes as markers of inflammatory response across samples. Cell interdigitation into the porous structure of the PEO coatings was demonstrated and cell processes remained adherent to the porous structure despite rigorous sonication. This study shows that PEO technology can be used to modify the surface of low-modulus beta-type titanium alloys with porous structure facilitating osseointegration, without impeding osteoblast activity or introducing an untoward inflammatory response.
引用
收藏
页码:176 / 184
页数:9
相关论文
共 66 条
[51]   Cell adhesion to plasma electrolytic oxidation (PEO) titania coatings, assessed using a centrifuging technique [J].
Robinson, H. J. ;
Markaki, A. E. ;
Collier, C. A. ;
Clyne, T. W. .
JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2011, 4 (08) :2103-2112
[52]   IL-10 family of cytokines [J].
Sabat, Robert .
CYTOKINE & GROWTH FACTOR REVIEWS, 2010, 21 (05) :315-324
[53]   In vitro assessment of the osteointegrative potential of a novel multiphase anodic spark deposition coating for orthopaedic and dental implants [J].
Sandrini, E ;
Morris, C ;
Chiesa, R ;
Cigada, A ;
Santin, M .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2005, 73B (02) :392-399
[54]   Apatite formation and cellular response of a novel bioactive titanium [J].
Sandrini, Enrico ;
Giordano, Carmen ;
Busini, Valentina ;
Signorelli, Enrico ;
Cigada, Alberto .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2007, 18 (06) :1225-1237
[55]   Characteristics of minerals in vesicles produced by human osteoblasts hFOB 1.19 and osteosarcoma Saos-2 cells stimulated for mineralization [J].
Strzelecka-Kiliszek, Agnieszka ;
Bozycki, Lukasz ;
Mebarek, Saida ;
Buchet, Rene ;
Pikula, Slawomir .
JOURNAL OF INORGANIC BIOCHEMISTRY, 2017, 171 :100-107
[56]   A Simple Method to Functionalize the Surface of Plasma Electrolytic Oxidation Produced TiO2 Coatings for Growing Hydroxyapatite [J].
Teng, Huan-Ping ;
Yang, Chia-Jung ;
Lin, Jia-Fu ;
Huang, Yu-Hsin ;
Lu, Fu-Hsing .
ELECTROCHIMICA ACTA, 2016, 193 :216-224
[57]   Interaction of Human Osteoblast-Like Saos-2 and MG-63 Cells with Thermally Oxidized Surfaces of a Titanium-Niobium Alloy [J].
Vandrovcova, Marta ;
Jirka, Ivan ;
Novotna, Katarina ;
Lisa, Vera ;
Frank, Otakar ;
Kolska, Zdenka ;
Stary, Vladimir ;
Bacakova, Lucie .
PLOS ONE, 2014, 9 (06)
[58]   Improvement of in vitro titanium bioactivity by three different surface treatments [J].
Vanzillotta, PS ;
Sader, MS ;
Bastos, IN ;
Soares, GD .
DENTAL MATERIALS, 2006, 22 (03) :275-282
[59]   Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo [J].
Webster, TJ ;
Ejiofor, JU .
BIOMATERIALS, 2004, 25 (19) :4731-4739
[60]   Physicochemical properties and in vitro cytocompatibility of modified titanium surfaces prepared via micro-arc oxidation with different calcium concentrations [J].
Wu, Sui-Dan ;
Zhang, Hui ;
Dong, Xu-Dong ;
Ning, Cheng-Yun ;
Fok, Alex S. L. ;
Wang, Yan .
APPLIED SURFACE SCIENCE, 2015, 329 :347-355