An explicit elastic solution for a brittle film with periodic cracks

被引:41
作者
Yin, H. M. [1 ]
Paulino, G. H. [2 ]
Buttlar, W. G. [2 ]
机构
[1] Columbia Univ, Dept Civil Engn & Engn Mech, New York, NY 10027 USA
[2] Univ Illinois, Dept Civil & Environm Engn, Newmark Lab, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
Energy release rate; Elastic materials; Fracture toughness; Thin film; Channeling crack; Periodic cracks;
D O I
10.1007/s10704-008-9286-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A two-dimensional explicit elastic solution is derived for a brittle film bonded to a ductile substrate through either a frictional interface or a fully bonded interface, in which periodically distributed discontinuities are formed within the film due to the applied tensile stress in the substrate and consideration of a "weak form stress boundary condition" at the crack surface. This solution is applied to calculate the energy release rate of three-dimensional channeling cracks. Fracture toughness and nominal tensile strength of the film are obtained through the relation between crack spacing and tensile strain in the substrate. Comparisons of this solution with finite element simulations show that the proposed model provides an accurate solution for the film/substrate system with a frictional interface; whereas for a fully bonded interface it produces a good prediction only when the substrate is not overly compliant or when the crack spacing is large compared with the thickness of the film. If the section is idealized as infinitely long, this solution in terms of the energy release rate recovers Beuth's exact solution for a fully cracked film bonded to a semi-infinite substrate. Interfacial shear stress and the edge effect on the energy release rate of an asymmetric crack are analyzed. Fracture toughness and crack spacing are calculated and are in good agreement with available experiments.
引用
收藏
页码:39 / 52
页数:14
相关论文
共 29 条