Approximation by Jakimovski-Leviatan Type Operators on a Complex Domain

被引:6
|
作者
Sucu, Sezgin [1 ]
Ibikli, Ertan [1 ]
机构
[1] Ankara Univ, Fac Sci, Dept Math, TR-06100 Ankara, Tandogan, Turkey
关键词
Szasz operator; Appell polynomials; Jakimovski-Leviatan type operators; Vitali's theorem; Q-BERNSTEIN POLYNOMIALS; COMPACT-DISKS; CONVERGENCE;
D O I
10.1007/s11785-012-0283-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present paper deals with the study of approximation by complex Stancu type generalization of Jakimovski-Leviatan type operators on a parabolic domain subset of complex plane by using the methods of Dressel et al. (Pacific J Math 13(4):1171-1180, 1963).
引用
收藏
页码:177 / 188
页数:12
相关论文
共 50 条
  • [1] Approximation by Jakimovski–Leviatan Type Operators on a Complex Domain
    Sezgin Sucu
    Ertan Ibikli
    Complex Analysis and Operator Theory, 2014, 8 : 177 - 188
  • [2] Approximation by Modified Integral Type Jakimovski-Leviatan Operators
    Atakut, Cigdem
    Buyukyazici, Ibrahim
    FILOMAT, 2016, 30 (01) : 29 - 39
  • [3] Generalization of Jakimovski-Leviatan type Szasz operators
    Sucu, Sezgin
    Varma, Serhan
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 270 : 977 - 983
  • [4] Jakimovski-Leviatan operators of Durrmeyer type involving Appell polynomials
    Gupta, Pooja
    Agrawal, Purshottam Narain
    TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (03) : 1457 - 1470
  • [5] Approximation results for Beta Jakimovski-Leviatan type operators via q-analogue
    Nasiruzzaman, Md.
    Tom, Mohammed A. O.
    Serra-Capizzano, Stefano
    Rao, Nadeem
    Ayman-Mursaleen, Mohammad
    FILOMAT, 2023, 37 (24) : 8389 - 8404
  • [6] Jakimovski-Leviatan operators of Kantorovich type involving multiple Appell polynomials
    Gupta, Pooja
    Acu, Ana Maria
    Agrawal, Purshottam Narain
    GEORGIAN MATHEMATICAL JOURNAL, 2021, 28 (01) : 73 - 82
  • [7] A sequence of Appell polynomials and the associated Jakimovski-Leviatan operators
    Acu, Ana-Maria
    Buscu, Ioan Cristian
    Rasa, Ioan
    ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (02)
  • [8] APPROXIMATION BY STANCU TYPE JAKIMOVSKI-LEVIATAN-PALTANEA OPERATORS
    Kumar, Alok
    Vandana
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (04): : 936 - 948
  • [9] Approximation by Jakimovski-Leviatan-beta operators in weighted space
    Nasiruzzaman, M.
    Mursaleen, M.
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [10] On the Approximation by Bivariate Szasz-Jakimovski-Leviatan-Type Operators of Unbounded Sequences of Positive Numbers
    Alotaibi, Abdullah
    MATHEMATICS, 2023, 11 (04)