Normal Brain Aging: Prediction of Age, Sex and White Matter Hyperintensities Using a MR Image-Based Machine Learning Technique

被引:3
|
作者
Bento, Mariana [1 ,2 ]
Souza, Roberto [1 ,3 ]
Salluzzi, Marina [1 ,3 ]
Frayne, Richard [1 ,2 ,3 ]
机构
[1] Univ Calgary, Hotchkiss Brain Inst, Radiol & Clin Neurosci, Calgary, AB, Canada
[2] Foothills Med Ctr, Calgary Image Proc & Anal Ctr, Calgary, AB, Canada
[3] Foothills Med Ctr, Seaman Family MR Res Ctr, Calgary, AB, Canada
来源
关键词
Medical imaging; Normal aging; Magnetic resonance imaging; Classification; TOOL;
D O I
10.1007/978-3-319-93000-8_61
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A better understanding of normal human brain aging is required to better study age-related neurodegeneration including cognitive impairment. We propose an automatic deep-learning method to analyze the predictive ability of magnetic resonance images with respect to age, sex and the presence of an age-related pathology (white matter hyperintensity, WMH). Experiments performed in a large dataset, containing 200 normal subjects, resulted in average accuracy rates to predict subject age (82.0%), sex (79.5%), and WMH occurrence (72.5%) when combining handcrafted texture and convolutional features. Positive and negative correlations between other extracted features and the subject characteristics (age, sex and WMH occurrence) were also observed. Even though human brain variability due to age, sex and WMH occurrence in structural magnetic resonance imaging may be subtle (and often not observable by human specialists), our results demonstrate that MR images alone contain relevant information that can better characterize the aging process and some demographic information of the population.
引用
收藏
页码:538 / 545
页数:8
相关论文
共 50 条
  • [1] White matter hyperintensities and normal-appearing white matter integrity in the aging brain
    Maniega, Susana Munoz
    Hernandez, Maria C. Valdes
    Clayden, Jonathan D.
    Royle, Natalie A.
    Murray, Catherine
    Morris, Zoe
    Aribisala, Benjamin S.
    Gow, Alan J.
    Starr, John M.
    Bastin, Mark E.
    Deary, Ian J.
    Wardlaw, Joanna M.
    NEUROBIOLOGY OF AGING, 2015, 36 (02) : 909 - 918
  • [2] Diagnosis of White Matter Hyperintensities Using Brain Morphometry and Support Vector Machine
    Zheng, L.
    Lu, W.
    Lu, W.
    Shi, L.
    Qiu, J.
    MEDICAL PHYSICS, 2020, 47 (06) : E527 - E528
  • [3] Predicting the Severity of White Matter Hyperintensities Using Structural MRI and Machine Learning
    Lu, W.
    Li, H.
    Zheng, L.
    Shi, L.
    Lu, W.
    Qiu, J.
    MEDICAL PHYSICS, 2020, 47 (06) : E547 - E548
  • [4] Supervised learning technique for the automated identification of white matter hyperintensities in traumatic brain injury
    Stone, James R.
    Wilde, Elisabeth A.
    Taylor, Brian A.
    Tate, David F.
    Levin, Harvey
    Bigler, Erin D.
    Scheibel, Randall S.
    Newsome, Mary R.
    Mayer, Andrew R.
    Abildskov, Tracy
    Black, Garrett M.
    Lennon, Michael J.
    York, Gerald E.
    Agarwal, Rajan
    DeVillasante, Jorge
    Ritter, John L.
    Walker, Peter B.
    Ahlers, Stephen T.
    Tustison, Nicholas J.
    BRAIN INJURY, 2016, 30 (12) : 1458 - 1468
  • [5] Deep learning-based brain age prediction in normal aging and dementia
    Jeyeon Lee
    Brian J. Burkett
    Hoon-Ki Min
    Matthew L. Senjem
    Emily S. Lundt
    Hugo Botha
    Jonathan Graff-Radford
    Leland R. Barnard
    Jeffrey L. Gunter
    Christopher G. Schwarz
    Kejal Kantarci
    David S. Knopman
    Bradley F. Boeve
    Val J. Lowe
    Ronald C. Petersen
    Clifford R. Jack
    David T. Jones
    Nature Aging, 2022, 2 : 412 - 424
  • [6] Deep learning-based brain age prediction in normal aging and dementia
    Lee, Jeyeon
    Burkett, Brian J.
    Min, Hoon-Ki
    Senjem, Matthew L.
    Lundt, Emily S.
    Botha, Hugo
    Graff-Radford, Jonathan
    Barnard, Leland R.
    Gunter, Jeffrey L.
    Schwarz, Christopher G.
    Kantarci, Kejal
    Knopman, David S.
    Boeve, Bradley F.
    Lowe, Val J.
    Petersen, Ronald C.
    Jack, Clifford R., Jr.
    Jones, David T.
    NATURE AGING, 2022, 2 (05): : 412 - +
  • [7] Machine learning prediction model for functional prognosis of acute ischemic stroke based on MRI radiomics of white matter hyperintensities
    Xia, Yayuan
    Li, Linhui
    Liu, Peipei
    Zhai, Tianxu
    Shi, Yibing
    BMC MEDICAL IMAGING, 2025, 25 (01):
  • [8] A voxel-based morphometric study of age- and sex-related changes in white matter volume in the normal aging brain
    Liu, Haijing
    Wang, Lixin
    Geng, Zuojun
    Zhu, Qingfeng
    Song, Zhenhu
    Chang, Ruiting
    Lv, Huandi
    NEUROPSYCHIATRIC DISEASE AND TREATMENT, 2016, 12 : 453 - 465
  • [9] Geological Feature Prediction Using Image-Based Machine Lear
    Jobe, T. D.
    Vital-Brazil, E.
    Khait, M.
    PETROPHYSICS, 2018, 59 (06): : 750 - 760
  • [10] Machine learning in image-based outcome prediction after radiotherapy: A review
    Yuan, Xiaohan
    Ma, Chaoqiong
    Hu, Mingzhe
    Qiu, Richard L. J.
    Salari, Elahheh
    Martini, Reema
    Yang, Xiaofeng
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2025, 26 (01):