ALGEBRAIC CYCLES AND TATE CLASSES ON HILBERT MODULAR VARIETIES

被引:3
作者
Getz, Jayce R. [1 ]
Hahn, Heekyoung [1 ]
机构
[1] Duke Univ, Dept Math, Durham, NC 27708 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Algebraic cycles; Tate classes; Hilbert modular varieties; REPRESENTATIONS; COHOMOLOGY; FORMS; SURFACES;
D O I
10.1142/S1793042113500875
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E/Q be a totally real number field that is Galois over Q, and let p be a cuspidal, nondihedral automorphic representation of GL(2)(A(E)) that is in the lowest weight discrete series at every real place of E. The representation pi cuts out a "motive" M-et(pi(infinity)) from the l-adic middle degree intersection cohomology of an appropriate Hilbert modular variety. If l is sufficiently large in a sense that depends on pi we compute the dimension of the space of Tate classes in M-et(pi(infinity)). Moreover if the space of Tate classes on this motive over all finite abelian extensions k/E is at most of rank one as a Hecke module, we prove that the space of Tate classes in M-et(pi(infinity)) is spanned by algebraic cycles.
引用
收藏
页码:161 / 176
页数:16
相关论文
共 19 条
[1]  
[Anonymous], 1980, BASE CHANGE GL 2
[2]  
Beilinson A. A., 1982, ASTERISQUE, V100, P148
[3]   MOTIVES FOR HILBERT MODULAR-FORMS [J].
BLASIUS, D ;
ROGAWSKI, JD .
INVENTIONES MATHEMATICAE, 1993, 114 (01) :55-87
[4]   L2-COHOMOLOGY OF LOCALLY SYMMETRIC MANIFOLDS OF FINITE VOLUME [J].
BOREL, A ;
CASSELMAN, W .
DUKE MATHEMATICAL JOURNAL, 1983, 50 (03) :625-647
[5]  
Bourbaki N., 2006, ELEMENTS MATH ALGEBR
[6]  
BRYLINSKI JL, 1984, ANN SCI ECOLE NORM S, V17, P361
[7]  
Deligne P., 1971, Lecture Notes in Math., V244, P123
[8]   Galois representations modulo p and cohomology of Hilbert modular varieties [J].
Dimitrov, M .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2005, 38 (04) :505-551
[9]   EISENSTEIN COHOMOLOGY OF ARITHMETIC GROUPS - THE CASE GL2 [J].
HARDER, G .
INVENTIONES MATHEMATICAE, 1987, 89 (01) :37-118
[10]  
HARDER G, 1986, J REINE ANGEW MATH, V366, P53