Simulation of anisotropic fracture behaviour of polycrystalline round blank tungsten using cohesive zone model

被引:6
作者
Mahler, Michael [1 ]
Gaganidze, Ermile [1 ]
Aktaa, Jarir [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Appl Mat, Hermann Von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
关键词
Tungsten; Cohesive zone model; Brittle; Polycrystalline; Fracture toughness; Anisotropic; TO-DUCTILE TRANSITION; INTERFACE ELEMENT; BRITTLE; DELAMINATION;
D O I
10.1016/j.jnucmat.2018.02.001
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The experimental observation of anisotropic fracture behaviour of round blank polycrystalline tungsten was simulated using finite element (FE) method in combination with cohesive zone model. Experiments in the past had shown that due to the anisotropic microstructure the fracture toughness varies by factor of about two for different orientations. The reason is the crack propagation direction, which is - in some orientations - not the typical crack propagation direction for mode I fracture. In some directions the crack is not growing perpendicular to the crack opening tensile load. Nevertheless, in the present paper, the microstructure is modelled by FE mesh including cohesive zone elements which mimic grain boundaries (GB). This is based on the assumption that GB's are the weakest links in the structure. The use of the correct parameters to describe the fracture process allows the description of the observed experimental orientation dependent fracture toughness. (c) 2018 Published by Elsevier B.V.
引用
收藏
页码:213 / 219
页数:7
相关论文
共 17 条
[1]   An interface element for the simulation of delamination in unidirectional fiber-reinforced composite laminates [J].
Balzani, C. ;
Wagner, W. .
ENGINEERING FRACTURE MECHANICS, 2008, 75 (09) :2597-2615
[2]  
Conte M., 2017, ICFRM 18 JAP
[3]   Fracture behaviour of polycrystalline tungsten [J].
Gaganidze, Ermile ;
Rupp, Daniel ;
Aktaa, Jarir .
JOURNAL OF NUCLEAR MATERIALS, 2014, 446 (1-3) :240-245
[4]   Strain-rate dependence of the brittle-to-ductile transition temperature in tungsten [J].
Giannattasio, A. ;
Roberts, S. G. .
PHILOSOPHICAL MAGAZINE, 2007, 87 (16-17) :2589-2598
[5]   Fracture toughness of polycrystalline tungsten alloys [J].
Gludovatz, B. ;
Wurster, S. ;
Hoffmann, A. ;
Pippan, R. .
INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2010, 28 (06) :674-678
[7]   Prediction of fracture toughness based on experiments with sub-size specimens in the brittle and ductile regimes [J].
Mahler, Michael ;
Aktaa, Jarir .
JOURNAL OF NUCLEAR MATERIALS, 2016, 472 :178-185
[8]   A thermodynamically and variationally consistent class of damage-type cohesive models [J].
Mosler, J. ;
Scheider, I. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2011, 59 (08) :1647-1668
[9]  
Ortiz M, 1999, INT J NUMER METH ENG, V44, P1267, DOI 10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO
[10]  
2-7