Smart Meter Data Obfuscation Using Correlated Noise

被引:17
|
作者
Khwaja, Ahmed Shaharyar [1 ]
Anpalagan, Alagan [1 ]
Naeem, Muhammad [2 ]
Venkatesh, Bala [1 ]
机构
[1] Ryerson Univ, Dept Elect Comp & Biomed Engn, Toronto, ON M5B 2K3, Canada
[2] COMSATS Univ Islamabad, Dept ECE, Wah Campus, Islamabad 47040, Pakistan
基金
加拿大自然科学与工程研究理事会;
关键词
Privacy; Data privacy; Encryption; Meters; Additive noise; Smart grids; correlated noise; data obfuscation; deep learning; generative adversarial networks (GANs); smart meter (SM); PRIVACY; AGGREGATION; SCHEME; SECURE;
D O I
10.1109/JIOT.2020.2983213
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we present a data obfuscation technique for smart meter data based on additive correlated noise. This noise is used to mask the data transmitted by different users to a third party, resulting in protection against eavesdroppers, but at the same time enabling the accurate recovery of statistics of the original data for use by the energy supplier. We analyze the proposed technique by studying its obfuscation performance and accuracy of statistics recovered from the masked data as a function of noise correlation with the users' data. Finally, we identify deep learning techniques such as generative adversarial networks for data obfuscation using correlated noise, and show preliminary results to demonstrate their performance in this scenario.
引用
收藏
页码:7250 / 7264
页数:15
相关论文
共 50 条
  • [1] Evaluation of Noise Distributions for Additive and Multiplicative Smart Meter Data Obfuscation
    Khwaja, Ahmed S.
    Erkucuk, Serhat
    Anpalagan, Alagan
    Venkatesh, Bala
    IEEE ACCESS, 2022, 10 : 27717 - 27735
  • [2] Location Obfuscation using Smart Meter Readings
    Maharaj, Kiran
    Hosein, Patrick
    2016 THIRD INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND ENGINEERING (ICACCE 2016), 2016, : 449 - 453
  • [3] Household Classification Using Smart Meter Data
    Carroll, Paula
    Murphy, Tadhg
    Hanley, Michael
    Dempsey, Daniel
    Dunne, John
    JOURNAL OF OFFICIAL STATISTICS, 2018, 34 (01) : 1 - 25
  • [4] Smart Meter Data Obfuscation With a Hybrid Privacy-Preserving Data Publishing Scheme Without a Trusted Third Party
    Tran, Hong-Yen
    Hu, Jiankun
    Pota, Hemanshu R.
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (17) : 16080 - 16095
  • [5] Low-Overhead Power Trace Obfuscation for Smart Meter Privacy
    Pagliari, Daniele Jahier
    Vinco, Sara
    Macii, Enrico
    Poncino, Massimo
    PROCEEDINGS OF THE 2019 56TH ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2019,
  • [6] SMART METER DATA ANALYTICS using OPENTSDB and HADOOP
    Prasad, Srikrishna
    Avinash, S. B.
    2013 IEEE INNOVATIVE SMART GRID TECHNOLOGIES - ASIA (ISGT ASIA), 2013,
  • [7] Smart Meter Data Collection Using Public Taxis
    Ngandu, Kabeya Gilbert
    Ouahada, Khmaies
    Rimer, Suvendi
    SENSORS, 2018, 18 (07)
  • [8] Distribution Grid Modeling Using Smart Meter Data
    Guo, Yifei
    Yuan, Yuxuan
    Wang, Zhaoyu
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2022, 37 (03) : 1995 - 2004
  • [9] Using grouped smart meter data in phase identification
    Brint, Andrew
    Poursharif, Goudarz
    Black, Mary
    Marshall, Mark
    COMPUTERS & OPERATIONS RESEARCH, 2018, 96 : 213 - +
  • [10] Electricity Consumption Clustering Using Smart Meter Data
    Tureczek, Alexander
    Nielsen, Per Sieverts
    Madsen, Henrik
    ENERGIES, 2018, 11 (04)