UNIFORM-IN-TIME SUPERCONVERGENCE OF THE HDG METHODS FOR THE ACOUSTIC WAVE EQUATION

被引:0
作者
Cockburn, Bernardo [1 ]
Quenneville-Belair, Vincent [1 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
Discontinuous Galerkin methods; hybridization; superconvergence; hyperbolic problems; DISCONTINUOUS GALERKIN METHOD; 2ND-ORDER ELLIPTIC PROBLEMS; FINITE-ELEMENT APPROXIMATIONS; CONVECTION-DIFFUSION EQUATIONS; ORDER HYPERBOLIC EQUATIONS; NAVIER-STOKES EQUATIONS; DIFFERENCE SCHEMES; TIMOSHENKO BEAMS; ERROR ANALYSIS; PROJECTION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present the first a priori error analysis of the hybridizable discontinuous Galerkin methods for the acoustic equation in the time-continuous case. We show that the velocity and the gradient converge with the optimal order of k + 1 in the L-2-norm uniformly in time whenever polynomials of degree k >= 0 are used. Finally, we show how to take advantage of this local postprocessing to obtain an approximation to the original scalar unknown also converging with order k + 2 for k >= 1. This puts on firm mathematical ground the numerical results obtained in J. Comput. Phys. 230 (2011), 3695-3718.
引用
收藏
页码:65 / 85
页数:21
相关论文
共 63 条
[1]   ACCURACY OF FINITE-DIFFERENCE MODELING OF ACOUSTIC-WAVE EQUATION [J].
ALFORD, RM ;
KELLY, KR ;
BOORE, DM .
GEOPHYSICS, 1974, 39 (06) :834-842
[2]  
[Anonymous], 2004, APPL MATH SCI
[3]  
[Anonymous], 1991, SPRINGER SERIES COMP
[4]  
[Anonymous], ANAL MINING, DOI DOI 10.1007/S13278-012-0093-5
[5]  
[Anonymous], 1977, MATH ASPECTS FINITE
[6]   ERROR ESTIMATES FOR FINITE-ELEMENT METHODS FOR 2ND ORDER HYPERBOLIC EQUATIONS [J].
BAKER, GA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (04) :564-576
[7]   Superconvergence and H(div) projection for discontinuous Galerkin methods [J].
Bastian, P ;
Rivière, B .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2003, 42 (10) :1043-1057
[8]   An analysis of new mixed finite elements for the approximation of wave propagation problems [J].
Bécache, E ;
Joly, P ;
Tsogka, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (04) :1053-1084
[9]  
Bruno OP, 2004, CMES-COMP MODEL ENG, V5, P319
[10]   Efficient high-order evaluation of scattering by periodic surfaces: vector-parametric gratings and geometric singularities [J].
Bruno, Oscar P. ;
Haslam, Michael C. .
WAVES IN RANDOM AND COMPLEX MEDIA, 2010, 20 (04) :530-550