Role of XBP1 in regulating the progression of non-alcoholic steatohepatitis

被引:103
作者
Wang, Qi [1 ,2 ,3 ]
Zhou, Haoming [1 ,2 ]
Bu, Qingfa [1 ,2 ]
Wei, Song [1 ,2 ,3 ]
Li, Lei [1 ,2 ]
Zhou, Jinren [1 ,2 ]
Zhou, Shun [1 ,2 ]
Su, Wantong [1 ,2 ]
Liu, Mu [1 ,2 ]
Liu, Zheng [1 ,2 ]
Wang, Mingming [1 ,2 ]
Lu, Ling [1 ,2 ,3 ,4 ]
机构
[1] Nanjing Med Univ, Affiliated Hosp 1, Hepatobiliary Ctr, 300 Guang Zhou Rd, Nanjing 210029, Jiangsu, Peoples R China
[2] Chinese Acad Med Sci, Res Unit Liver Transplantat & Transplant Immunol, Nanjing, Peoples R China
[3] Southeast Univ, Sch Med, Nanjing, Peoples R China
[4] Nanjing Med Univ, Collaborat Innovat Ctr Canc Personalized Med, Jiangsu Key Lab Canc Biomarkers Prevent & Treatme, Nanjing, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
XBP1; hepatocytes; macrophages; hepatic stellate cells; non-alcoholic steatohepatitis; LIVER-DISEASE; ACTIVATION; MECHANISMS; FIBROSIS; MEDIATOR;
D O I
10.1016/j.jhep.2022.02.031
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Background & Aims: Non-alcoholic steatohepatitis (NASH) is associated with the dysregulation of lipid metabolism and hepatic inflammation, though the underlying mechanisms remain unclear. We aimed to investigate the role of X-box binding protein-1 (XBP1) in the progression of NASH. Methods: Human liver tissues obtained from patients with NASH and controls were used to assess XBP1 expression. NASH models were developed in hepatocyte-specific Xbp1 knockout (Xbp1(Delta Hep)), macrophage-specific Xbp1 knockout (Xbp1(Delta Mf)), macrophage-specific Nlrp3 knockout, and wild-type (Xbp1(FL/FL) or Nlrp3(FL/FL)) mice fed with a high-fat diet for 26 weeks or a methionine/choline-deficient diet for 6 weeks. Results: The expression of XBP1 was significantly upregulated in liver samples from patients with NASH. Hepatocyte-specific Xbp1 deficiency inhibited the development of steatohepatitis in mice fed the high-fat or methionine/choline-deficient diets. Meanwhile, macrophage-specific Xbp1 knockout mice developed less severe steatohepatitis and fibrosis than wild-type Xbp1(FL/FL) mice in response to the high-fat or methionine/choline-deficient diets. Macrophage-specific Xbp1 knockout mice showed M2 anti-inflammatory polarization. Xbp1-deleted macrophages reduced steatohepatitis by decreasing the expression of NLRP3 and secretion of pro-inflammatory cytokines, which mediate M2 macrophage polarization in macrophage-specific Xbp1 knockout mice. Steatohepatitis was less severe in macrophage-specific Nlrp3 knockout mice than in wild-type Nlrp3(FL/FL) mice. Xbp1-deleted macrophages prevented hepatic stellate cell activation by decreasing expression of TGF-beta 1. Less fibrotic changes were observed in macrophage-specific Xbp1 knockout mice than in wild-type Xbp1(FL/FL) mice. Inhibition of XBP1 suppressed the development of NASH. Conclusion: XBP1 regulates the development of NASH. XBP1 inhibitors protect against steatohepatitis. Thus, XBP1 is a potential target for the treatment of NASH. Lay summary: XBP1 is a transcription factor that is upregulated in liver tissues of patients with non-alcoholic steatohepatitis (NASH). Conditional knockout of Xbp1 in hepatocytes resulted in decreased lipid accumulation in mice, while genetic deletion of Xbp1 in macrophages ameliorated nutritional steatohepatitis and fibrosis in mice. Pharmacological inhibition of XBP1 protects against steatohepatitis and fibrosis, highlighting a promising therapeutic strategy for NASH. (c) 2022 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver.
引用
收藏
页码:312 / 325
页数:14
相关论文
共 43 条
[1]   XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks [J].
Acosta-Alvear, Diego ;
Zhou, Yiming ;
Blais, Alexandre ;
Tsikitis, Mary ;
Lents, Nathan H. ;
Arias, Carolina ;
Lennon, Christen J. ;
Kluger, Yuval ;
Dynlacht, Brian David .
MOLECULAR CELL, 2007, 27 (01) :53-66
[2]   Suppression of microRNA activity amplifies IFN-γ-induced macrophage activation and promotes anti-tumour immunity [J].
Baer, Caroline ;
Squadrito, Mario Leonardo ;
Laoui, Damya ;
Thompson, Danielle ;
Hansen, Sarah K. ;
Kiialainen, Anna ;
Hoves, Sabine ;
Ries, Carola H. ;
Ooi, Chia-Huey ;
De Palma, Michele .
NATURE CELL BIOLOGY, 2016, 18 (07) :790-+
[3]   Macrophage MerTK Promotes Liver Fibrosis in Nonalcoholic Steatohepatitis [J].
Cai, Bishuang ;
Dongiovanni, Paola ;
Corey, Kathleen E. ;
Wang, Xiaobo ;
Shmarakov, Igor O. ;
Zheng, Ze ;
Kasikara, Canan ;
Davra, Viralkumar ;
Meroni, Marica ;
Chung, Raymond T. ;
Rothlin, Carla V. ;
Schwabe, Robert F. ;
Blaner, William S. ;
Birge, Raymond B. ;
Valenti, Luca ;
Tabas, Ira .
CELL METABOLISM, 2020, 31 (02) :406-+
[4]  
Chopra S, 2019, SCIENCE, P365
[5]   The Histone Methyltransferase Suv39h2 Contributes to Nonalcoholic Steatohepatitis in Mice [J].
Fan, Zhiwen ;
Li, Luyang ;
Li, Min ;
Zhang, Xinjian ;
Hao, Chenzhi ;
Yu, Liming ;
Zeng, Sheng ;
Xu, Huihui ;
Fang, Mingming ;
Shen, Aiguo ;
Jenuwein, Thomas ;
Xu, Yong .
HEPATOLOGY, 2017, 65 (06) :1904-1919
[6]   Lipotoxicity in NASH [J].
Fuchs, Michael ;
Sanyal, Arun J. .
JOURNAL OF HEPATOLOGY, 2012, 56 (01) :291-293
[7]   Lipid droplets and liver disease: from basic biology to clinical implications [J].
Gluchowski, Nina L. ;
Becuwe, Michel ;
Walther, Tobias C. ;
Farese, Robert V., Jr. .
NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY, 2017, 14 (06) :343-355
[8]   The regulation of hepatic fatty acid synthesis and partitioning: the effect of nutritional state [J].
Hodson, Leanne ;
Gunn, Pippa J. .
NATURE REVIEWS ENDOCRINOLOGY, 2019, 15 (12) :689-700
[9]   NLRP3 inflammasome activation and cell death [J].
Huang, Yi ;
Xu, Wen ;
Zhou, Rongbin .
CELLULAR & MOLECULAR IMMUNOLOGY, 2021, 18 (09) :2114-2127
[10]   Fructose and sugar: A major mediator of non-alcoholic fatty liver disease [J].
Jensen, Thomas ;
Abdelmalek, Manal F. ;
Sullivan, Shelby ;
Nadeau, Kristen J. ;
Green, Melanie ;
Roncal, Carlos ;
Nakagawa, Takahiko ;
Kuwabara, Masanari ;
Sato, Yuka ;
Kang, Duk-Hee ;
Tolan, Dean R. ;
Sanchez-Lozada, Laura G. ;
Rosen, Hugo R. ;
Lanaspa, Miguel A. ;
Diehl, Anna Mae ;
Johnson, Richard J. .
JOURNAL OF HEPATOLOGY, 2018, 68 (05) :1063-1075