Upper Bounds for the Hausdorff Dimension and Stratification of an Invariant Set of an Evolution System on a Hilbert Manifold

被引:2
作者
Kruk, A. V. [1 ]
Malykh, A. E. [1 ]
Reitmann, V. [1 ]
机构
[1] St Petersburg State Univ, Fac Math & Mech, Peterhof 198504, Russia
基金
俄罗斯科学基金会;
关键词
LYAPUNOV DIMENSION; ATTRACTORS; OBSERVABILITY;
D O I
10.1134/S0012266117130031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a generalization of the well-known Douady-Oesterl, theorem on the upper bound for the Hausdorff dimension of an invariant set of a finite-dimensional mapping to the case of a smooth mapping generating a dynamical system on an infinite-dimensional Hilbert manifold. A similar estimate is given for the invariant set of a dynamical system generated by a differential equation on a Hilbert manifold. As an example, the well-known sine-Gordon equation is considered. In addition, we propose an algorithm for the Whitney stratification of semianalytic sets on finite-dimensional manifolds.
引用
收藏
页码:1715 / 1733
页数:19
相关论文
共 35 条
  • [1] [Anonymous], 2012, Infinite-dimensional dynamical systems in mechanics and physics, DOI 10.1007/978-1-4684-0313-8
  • [2] [Anonymous], 1965, DIFFERENTIAL COMBINA
  • [3] CYLINDRICAL ALGEBRAIC DECOMPOSITION .1. THE BASIC ALGORITHM
    ARNON, DS
    COLLINS, GE
    MCCALLUM, S
    [J]. SIAM JOURNAL ON COMPUTING, 1984, 13 (04) : 865 - 877
  • [4] Boichenko V. A., 1991, FUNKTSIYAKH LYAPUNOV
  • [5] Boichenko V.A., 2005, Dimension Theory for Ordinary Differential Equations
  • [6] CHUESHOV ID, 1999, INTRO THEORY INFINIT
  • [7] Hausdorff dimension of invariant sets for random dynamical systems
    Crauel H.
    Flandoli F.
    [J]. Journal of Dynamics and Differential Equations, 1998, 10 (3) : 449 - 474
  • [8] DOUADY A, 1980, CR ACAD SCI A MATH, V290, P1135
  • [9] Gatermann K., 2000, LECT NOTES MATH, V1728, DOI DOI 10.1007/BFB0104059
  • [10] GHIDAGLIA JM, 1987, J MATH PURE APPL, V66, P273