Fatigue-resistant adhesion of hydrogels

被引:304
作者
Liu, Ji [1 ,2 ]
Lin, Shaoting [2 ]
Liu, Xinyue [2 ]
Qin, Zhao [3 ,4 ]
Yang, Yueying [2 ,5 ,6 ]
Zang, Jianfeng [5 ,6 ]
Zhao, Xuanhe [2 ,7 ]
机构
[1] Southern Univ Sci & Technol, Dept Mech & Energy Engn, Shenzhen 518055, Peoples R China
[2] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[3] Syracuse Univ, Dept Civil & Environm Engn, Syracuse, NY 13244 USA
[4] Syracuse Univ, Syracuse Biomat Inst, Syracuse, NY 13244 USA
[5] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China
[6] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[7] MIT, Dept Civil & Environm Engn, Cambridge, MA 02139 USA
关键词
FORCE-FIELD; STRENGTH; MICROMECHANICS; TOUGHNESS; FRACTURE; ENERGY;
D O I
10.1038/s41467-020-14871-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The adhesion of soft connective tissues (tendons, ligaments, and cartilages) on bones in many animals can maintain high toughness (similar to 800 J m(-2)) over millions of cycles of mechanical loads. Such fatigue-resistant adhesion has not been achieved between synthetic hydrogels and engineering materials, but is highly desirable for diverse applications such as artificial cartilages and tendons, robust antifouling coatings, and hydrogel robots. Inspired by the nanostructured interfaces between tendons/ligaments/cartilages and bones, we report that bonding ordered nanocrystalline domains of synthetic hydrogels on engineering materials can give a fatigue-resistant adhesion with an interfacial fatigue threshold of 800 J m(-2), because the fatigue-crack propagation at the interface requires a higher energy to fracture the ordered nanostructures than amorphous polymer chains. Our method enables fatigue-resistant hydrogel coatings on diverse engineering materials with complex geometries. We further demonstrate that the fatigue-resistant hydrogel coatings exhibit low friction and low wear against natural cartilages.
引用
收藏
页数:9
相关论文
共 32 条
[1]  
[Anonymous], 2005, ANN BOOK ASTM STAND, V3
[2]   Fatigue fracture of tough hydrogels [J].
Bai, Ruobing ;
Yang, Quansan ;
Tang, Jingda ;
Morelle, Xavier P. ;
Vlassak, Joost ;
Suo, Zhigang .
EXTREME MECHANICS LETTERS, 2017, 15 :91-96
[3]   Fatigue peeling at rubber interfaces [J].
Baumard, T. L. M. ;
Thomas, A. G. ;
Busfield, J. J. C. .
PLASTICS RUBBER AND COMPOSITES, 2012, 41 (07) :296-300
[4]   EFFECT OF PORE-SIZE ON THE PEEL STRENGTH OF ATTACHMENT OF FIBROUS TISSUE TO POROUS-SURFACED IMPLANTS [J].
BOBYN, JD ;
WILSON, GJ ;
MACGREGOR, DC ;
PILLIAR, RM ;
WEATHERLY, GC .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 1982, 16 (05) :571-584
[5]   CRYSTAL STRUCTURE OF POLYVINYL ALCOHOL [J].
BUNN, CW .
NATURE, 1948, 161 (4102) :929-930
[6]   ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation [J].
Chenoweth, Kimberly ;
van Duin, Adri C. T. ;
Goddard, William A., III .
JOURNAL OF PHYSICAL CHEMISTRY A, 2008, 112 (05) :1040-1053
[7]   Effect of substrate surface energy on transcrystalline growth and its effect on interfacial adhesion of semicrystalline polymers [J].
Cho, KW ;
Kim, DW ;
Yoon, S .
MACROMOLECULES, 2003, 36 (20) :7652-7660
[8]   GRAZING-INCIDENCE X-RAY-SCATTERING STUDIES OF THIN-FILMS OF AN AROMATIC POLYIMIDE [J].
FACTOR, BJ ;
RUSSELL, TP ;
TONEY, MF .
MACROMOLECULES, 1993, 26 (11) :2847-2859
[9]   Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture [J].
Fantner, GE ;
Hassenkam, T ;
Kindt, JH ;
Weaver, JC ;
Birkedal, H ;
Pechenik, L ;
Cutroni, JA ;
Cidade, GAG ;
Stucky, GD ;
Morse, DE ;
Hansma, PK .
NATURE MATERIALS, 2005, 4 (08) :612-616
[10]   Materials become insensitive to flaws at nanoscale:: Lessons from nature [J].
Gao, HJ ;
Ji, BH ;
Jäger, IL ;
Arzt, E ;
Fratzl, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (10) :5597-5600