Global variational solutions to the compressible magnetohydrodynamic equations

被引:97
作者
Fan, Jishan [1 ,2 ]
Yu, Wanghui [2 ]
机构
[1] Nanjing Forestry Univ, Coll Informat Sci & Technol, Nanjing 210037, Peoples R China
[2] Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China
基金
中国国家自然科学基金;
关键词
Magnetohydrodynamics (MHD); Weak solutions with a defect measure; Time-periodic solutions;
D O I
10.1016/j.na.2007.10.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of globally defined variational solutions to the compressible magnetohydrodynamic (MHD) equations with the coefficients depending on the temperature. As a by-product, we give a simple proof for the nonexistence of nontrivial weak time-periodic solutions by the entropy principle of Clausius-Duhem and a new Poincare-type inequality. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3637 / 3660
页数:24
相关论文
共 32 条
[1]   On the Boltzmann equation for long-range interactions [J].
Alexandre, R ;
Villani, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2002, 55 (01) :30-70
[2]  
[Anonymous], MEMOIRS AM MATH SOC
[3]  
[Anonymous], 1990, MAGNETOHYDRODYNAMICS
[4]  
[Anonymous], 1986, IZV AKAD NAUK KAZAKH
[5]  
Bogovskii M E., 1980, Theory of Cubature Formulas and the Application of Functional Analysis to Problems of Mathematical Physics, P5
[6]  
Borchers W., 1990, HOKKAIDO MATH J, V19, P67, DOI DOI 10.14492/HOKMJ/1381517172
[7]  
CABANNES H, 1970, THEORETICAL MAGNETOF
[8]   Existence and continuous dependence of large solutions for the magnetohydrodynamic equations [J].
Chen, GQ ;
Wang, DH .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2003, 54 (04) :608-632
[9]   Global solutions of nonlinear magnetohydrodynamics with large initial data [J].
Chen, GQ ;
Wang, DH .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 182 (02) :344-376
[10]   ON THE FOKKER-PLANCK-BOLTZMANN EQUATION [J].
DIPERNA, RJ ;
LIONS, PL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 120 (01) :1-23