Steady free-surface flow over spatially periodic topography

被引:5
作者
Binder, B. J. [1 ]
Blyth, M. G. [2 ]
Balasuriya, S. [1 ]
机构
[1] Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
[2] Univ E Anglia, Sch Math, Norwich NR4 7TJ, Norfolk, England
基金
澳大利亚研究理事会;
关键词
nonlinear dynamical systems; waves/free-surface flows; WAVES; WATER; EQUATION;
D O I
10.1017/jfm.2015.507
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Two-dimensional free-surface flow over a spatially periodic channel bed topography is examined using a steady periodically forced Korteweg-de Vries equation. The existence of new forced solitary-type waves with periodic tails is demonstrated using recently developed non-autonomous dynamical-systems theory. Bound states with two or more co-existing solitary waves are also identified. The solution space for varying amplitude of forcing is explored using a numerical method. A rich bifurcation structure is uncovered and shown to be consistent with an asymptotic theory based on small forcing amplitude.
引用
收藏
页数:14
相关论文
共 25 条
[2]   Asymptotic analysis of steady solutions of the KdVB equation with application to resonant sloshing [J].
Amundsen, D. E. ;
Cox, E. A. ;
Mortell, M. P. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2007, 58 (06) :1008-1034
[3]   Nonautonomous analysis of steady Korteweg-de Vries waves under nonlocalised forcing [J].
Balasuriya, Sanjeeva ;
Binder, Benjamin J. .
PHYSICA D-NONLINEAR PHENOMENA, 2014, 285 :28-41
[4]   Accurate control of hyperbolic trajectories in any dimension [J].
Balasuriya, Sanjeeva ;
Padberg-Gehle, Kathrin .
PHYSICAL REVIEW E, 2014, 90 (03)
[5]   CONTROLLING THE UNSTEADY ANALOGUE OF SADDLE STAGNATION POINTS [J].
Balasuriya, Sanjeeva ;
Padberg-Gehle, Kathrin .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2013, 73 (02) :1038-1057
[6]   A Tangential Displacement Theory for Locating Perturbed Saddles and Their Manifolds [J].
Balasuriya, Sanjeeva .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2011, 10 (03) :1100-1126
[7]  
Billingham J., 2000, WAVE MOTION
[8]   Non-uniqueness of steady free-surface flow at critical Froude number [J].
Binder, Benjamin J. ;
Blyth, Mark G. ;
Balasuriya, Sanjeeva .
EPL, 2014, 105 (04)
[9]   Free-surface flow past arbitrary topography and an inverse approach for wave-free solutions [J].
Binder, Benjamin J. ;
Blyth, M. G. ;
McCue, Scott W. .
IMA JOURNAL OF APPLIED MATHEMATICS, 2013, 78 (04) :685-696
[10]   Forced solitary waves and fronts past submerged obstacles [J].
Binder, BJ ;
Vanden-Broeck, JM ;
Dias, F .
CHAOS, 2005, 15 (03)