Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers

被引:253
作者
Grulkowski, Ireneusz [1 ,2 ]
Liu, Jonathan J. [1 ,2 ]
Potsaid, Benjamin [1 ,2 ,3 ]
Jayaraman, Vijaysekhar [4 ]
Lu, Chen D. [1 ,2 ]
Jiang, James [3 ]
Cable, Alex E. [3 ]
Duker, Jay S. [5 ]
Fujimoto, James G. [1 ,2 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[3] Thorlabs Inc, Adv Imaging Grp, Newton, NJ USA
[4] Praevium Res Inc, Santa Barbara, CA USA
[5] Tufts Univ, New England Eye Ctr, Boston, MA 02111 USA
基金
美国国家卫生研究院;
关键词
OPTICAL COHERENCE TOMOGRAPHY; FREQUENCY-DOMAIN REFLECTOMETRY; IN-VIVO; MEGAHERTZ OCT; AXIAL SCANS; 200; KHZ;
D O I
10.1364/BOE.3.002733
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We demonstrate swept source OCT utilizing vertical-cavity surface emitting laser (VCSEL) technology for in vivo high speed retinal, anterior segment and full eye imaging. The MEMS tunable VCSEL enables long coherence length, adjustable spectral sweep range and adjustable high sweeping rate (50-580 kHz axial scan rate). These features enable integration of multiple ophthalmic applications into one instrument. The operating modes of the device include: ultrahigh speed, high resolution retinal imaging (up to 580 kHz); high speed, long depth range anterior segment imaging (100 kHz) and ultralong range full eye imaging (50 kHz). High speed imaging enables wide-field retinal scanning, while increased light penetration at 1060 nm enables visualization of choroidal vasculature. Comprehensive volumetric data sets of the anterior segment from the cornea to posterior crystalline lens surface are also shown. The adjustable VCSEL sweep range and rate make it possible to achieve an extremely long imaging depth range of similar to 50 mm, and to demonstrate the first in vivo 3D OCT imaging spanning the entire eye for non-contact measurement of intraocular distances including axial eye length. Swept source OCT with VCSEL technology may be attractive for next generation integrated ophthalmic OCT instruments. (C) 2012 Optical Society of America
引用
收藏
页码:2733 / 2751
页数:19
相关论文
共 51 条
[1]   Extended coherence length Fourier domain mode locked lasers at 1310 nm [J].
Adler, Desmond C. ;
Wieser, Wolfgang ;
Trepanier, Francois ;
Schmitt, Joseph M. ;
Huber, Robert A. .
OPTICS EXPRESS, 2011, 19 (21) :20930-20939
[2]   Optical frequency-domain reflectometry with a rapid wavelength-scanning superstructure-grating distributed Bragg reflector laser [J].
Amano, T ;
Hiro-Oka, H ;
Choi, D ;
Furukawa, H ;
Kano, F ;
Takeda, M ;
Nakanishi, M ;
Shimizu, K ;
Ohbayashi, K .
APPLIED OPTICS, 2005, 44 (05) :808-816
[3]  
[Anonymous], 2007, ANSI Z, V136, P1
[4]   Improved spectral optical coherence tomography using optical frequency comb [J].
Bajraszewski, Tomasz ;
Wojtkowski, Maciej ;
Szkulmowski, Maciej ;
Szkulmowska, Anna ;
Huber, Robert ;
Kowalczyk, Andrzej .
OPTICS EXPRESS, 2008, 16 (06) :4163-4176
[5]  
Bouma BE, 2008, BIOL MED PHYS BIOMED, P209, DOI 10.1007/978-3-540-77550-8_7
[6]   Optical coherence tomography using a frequency-tunable optical source [J].
Chinn, SR ;
Swanson, EA ;
Fujimoto, JG .
OPTICS LETTERS, 1997, 22 (05) :340-342
[7]   Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source [J].
Choma, MA ;
Hsu, K ;
Izatt, JA .
JOURNAL OF BIOMEDICAL OPTICS, 2005, 10 (04)
[8]   Sensitivity advantage of swept source and Fourier domain optical coherence tomography [J].
Choma, MA ;
Sarunic, MV ;
Yang, CH ;
Izatt, JA .
OPTICS EXPRESS, 2003, 11 (18) :2183-2189
[9]  
Choquette K.D., 2012, Advances in Optical Technologies, V2012, P1, DOI [10.1155/2012/280920, DOI 10.1155/2012/280920]
[10]   Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography [J].
de Boer, JF ;
Cense, B ;
Park, BH ;
Pierce, MC ;
Tearney, GJ ;
Bouma, BE .
OPTICS LETTERS, 2003, 28 (21) :2067-2069