On a nonlocal hyperbolic conservation law arising from a gradient constraint problem

被引:7
作者
Amorim, Paulo [1 ]
机构
[1] Univ Lisbon, Fac Ciencias, Dept Matemat, Ctr Matemat & Aplicaoes Fundamentais, P-1649003 Lisbon, Portugal
来源
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY | 2012年 / 43卷 / 04期
关键词
hyperbolic conservation law; nonlocal term; well-posedness of the Cauchy problem; DEGENERATE PARABOLIC EQUATIONS; STABILITY;
D O I
10.1007/s00574-012-0028-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In some models involving nonlinear conservation laws, physical mechanisms exist which prevent the formation of shocks. This gives rise to conservation laws with a constraint on the gradient of the solution. We approach this problem by studying a related conservation law with a spatial nonlocal term. We prove existence, uniqueness and stability of solution of the Cauchy problem for this nonlocal conservation law. In turn, this allows us to provide a notion of solution to the conservation law with a gradient constraint. The proof of existence is based on a time-stepping technique, and an L (1)-contraction estimate follows from stability results of Karlsen and Risebro.
引用
收藏
页码:599 / 614
页数:16
相关论文
共 16 条
[1]   AN INTEGRO-DIFFERENTIAL CONSERVATION LAW ARISING IN A MODEL OF GRANULAR FLOW [J].
Amadori, Debora ;
Shen, Wen .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2012, 9 (01) :105-131
[2]  
[Anonymous], ANAL MATH APPL
[3]  
Betancourt F, 2011, COMMUN MATH SCI, V9, P711
[4]   On nonlocal conservation laws modelling sedimentation [J].
Betancourt, F. ;
Buerger, R. ;
Karlsen, K. H. ;
Tory, E. M. .
NONLINEARITY, 2011, 24 (03) :855-885
[5]   ONE-DIMENSIONAL TRANSPORT EQUATIONS WITH DISCONTINUOUS COEFFICIENTS [J].
Bouchut, F. ;
James, F. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 32 (07) :891-933
[6]   ON SCALAR HYPERBOLIC CONSERVATION LAWS WITH A DISCONTINUOUS FLUX [J].
Bulicek, Miroslav ;
Gwiazda, Piotr ;
Malek, Josef ;
Swierczewska-Gwiazda, Agnieszka .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2011, 21 (01) :89-113
[7]   Quasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients [J].
Chen, GQ ;
Karlsen, KH .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2005, 4 (02) :241-266
[8]   CONTROL OF THE CONTINUITY EQUATION WITH A NON LOCAL FLOW [J].
Colombo, Rinaldo M. ;
Herty, Michael ;
Mercier, Magali .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2011, 17 (02) :353-379
[9]   Solutions to a scalar discontinuous conservation law in a limit case of phase transitions [J].
Dias, JP ;
Figueira, M ;
Rodrigues, JF .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2005, 7 (02) :153-163
[10]   On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients [J].
Karlsen, KH ;
Risebro, NH .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2003, 9 (05) :1081-1104