Determination temperature of a backward heat equation with time-dependent coefficients

被引:6
作者
Nguyen Huy Tuan [1 ]
Ngo Van Hoa [1 ]
机构
[1] Ton Duc Thang Univ, Div Appl Math, Ho Chi Minh City, Vietnam
关键词
backward heat problem; Ill-posed problem; nonhomogeneous heat; contraction principle; ILL-POSED PROBLEMS; FOURIER REGULARIZATION; CONDUCTION PROBLEM; ERROR ESTIMATE; STABILITY; APPROXIMATION; SPACE;
D O I
10.2478/s12175-012-0056-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the truncation method for solving a backward heat conduction problem with time-dependent coefficients. For this method, we give the stability analysis with new error estimates. Meanwhile, we investigate the roles of regularization parameters in these two methods. These estimates prove that our method is effective.
引用
收藏
页码:937 / 948
页数:12
相关论文
共 26 条
[21]  
Tautenhahn U., 1996, Z. Anal. Anwendungen, V15, P475, DOI [10.4171/zaa/711, DOI 10.4171/ZAA/711]
[22]   Regularization and error estimate for the nonlinear backward heat problem using a method of integral equation [J].
Trong, Dang Duc ;
Tuan, Nguyen Huy .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (09) :4167-4176
[23]  
Trong DD, 2007, Z ANAL ANWEND, V26, P231
[24]  
TRONG DD, 2006, ELECTRON J DIFFER EQ, P1
[25]   Stability of the solution of backward heat equation on a weak compactum [J].
Yildiz, B ;
Özdemir, M .
APPLIED MATHEMATICS AND COMPUTATION, 2000, 111 (01) :1-6
[26]   A stability estimate on the regularized solution of the backward heat equation [J].
Yildiz, B ;
Yetiskin, H ;
Sever, A .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 135 (2-3) :561-567