Finite-time mixed outer synchronization of complex networks with time-varying delay and unknown parameters

被引:30
作者
Jing, Taiyan [1 ,2 ]
Chen, Fangqi [2 ]
Li, Quanhong [3 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Mech, Nanjing 210016, Jiangsu, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 210016, Jiangsu, Peoples R China
[3] China Petr First Construct Corp, Luoyang 471023, Peoples R China
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
Complex networks; Unknown parameters; Finite-time mixed outer synchronization; Time-varying delay; Bidirectional coupling; Parameters identification; CHAOTIC SYSTEMS; ADAPTIVE SYNCHRONIZATION; DYNAMICAL NETWORKS;
D O I
10.1016/j.apm.2015.03.051
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, the finite-time mixed outer synchronization (FMOS) of chaotic neural networks with time-varying delay and unknown parameters is investigated. By adjusting control strengths with the updated laws, we achieve the finite-time mixed outer synchronization between two complex networks based on the finite-time stability theory and linear matrix inequality. Furthermore, the unknown parameters estimation of the networks is identified in a finite time. Finally, numerical simulations are given to demonstrate the effectiveness of the analytical results obtained here. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:7734 / 7743
页数:10
相关论文
共 29 条
[1]   Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique [J].
Aghababa, Mohammad Pourmahmood ;
Khanmohammadi, Sohrab ;
Alizadeh, Ghassem .
APPLIED MATHEMATICAL MODELLING, 2011, 35 (06) :3080-3091
[2]  
[Anonymous], 1998, From chaos to order: perspectives, methodologies, and applications
[3]  
Banerjee R, 2009, L N INST COMP SCI SO, V4, P1072
[4]   Circadian rhythms from multiple oscillators: Lessons from diverse organisms [J].
Bell-Pedersen, D ;
Cassone, VM ;
Earnest, DJ ;
Golden, SS ;
Hardin, PE ;
Thomas, TL ;
Zoran, MJ .
NATURE REVIEWS GENETICS, 2005, 6 (07) :544-556
[5]  
Cui B, 2007, CHAOS SOLITON FRACT, V39, P288
[6]   Adaptive synchronization of a modified and uncertain chaotic Van der Pol-Duffing oscillator based on parameter identification [J].
Fotsin, HB ;
Woafo, P .
CHAOS SOLITONS & FRACTALS, 2005, 24 (05) :1363-1371
[7]  
He P., 2013, OPTIMAL CONTROL APPL, DOI [http://dx.doi.org/10.1002/oca.2094, DOI 10.1002/0CA.2094]
[8]   Synchronization of general complex networks via adaptive control schemes [J].
He, Ping ;
Jing, Chun-Guo ;
Chen, Chang-Zhong ;
Fan, Tao ;
Nik, Hassan Saberi .
PRAMANA-JOURNAL OF PHYSICS, 2014, 82 (03) :499-514
[9]   Robust Decentralized Adaptive Synchronization of General Complex Networks with Coupling Delayed and Uncertainties [J].
He, Ping ;
Jing, Chun-Guo ;
Fan, Tao ;
Chen, Chang-Zhong .
COMPLEXITY, 2014, 19 (03) :10-26
[10]   Finite-time mixed outer synchronization of complex networks with coupling time-varying delay [J].
He, Ping ;
Ma, Shu-Hua ;
Fan, Tao .
CHAOS, 2012, 22 (04)