DESIGN OF UNKNOWN INPUT FRACTIONAL-ORDER OBSERVERS FOR FRACTIONAL-ORDER SYSTEMS

被引:58
|
作者
N'Doye, Ibrahima [1 ]
Darouach, Mohamed [2 ]
Voos, Holger [1 ]
Zasadzinski, Michel [2 ]
机构
[1] Univ Luxembourg, Fac Sci Technol & Commun, L-1359 Luxembourg, Luxembourg
[2] Univ Lorraine, IUT Longwy, Res Ctr Automat Control Nancy, CRAN UMR,CNRS, F-54400 Cosnes Et Romain, France
关键词
fractional calculus; fractional-order systems; fractional-order observers; existence condition; linear matrix inequality; unknown input; stability; LINEAR-SYSTEMS; STABILITY; ALGORITHM; POLE;
D O I
10.2478/amcs-2013-0037
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers a method of designing fractional-order observers for continuous-time linear fractional-order systems with unknown inputs. Conditions for the existence of these observers are given. Sufficient conditions for the asymptotical stability of fractional-order observer errors with the fractional order a satisfying 0 < alpha < 2 are derived in terms of linear matrix inequalities. Two numerical examples are given to demonstrate the applicability of the proposed approach, where the fractional order a belongs to 1 <= alpha < 2 and 0 < alpha <= 1, respectively. A stability analysis of the fractional-order error system is made and it is shown that the fractional-order observers are as stable as their integer order counterpart and guarantee better convergence of the estimation error.
引用
收藏
页码:491 / 500
页数:10
相关论文
共 50 条
  • [1] An Unknown Input Fractional-Order Observer Design for Fractional-Order Glucose-Insulin System
    N'Doye, Ibrahima
    Voos, Holger
    Darouach, Mohamed
    Schneider, Jochen G.
    Knauf, Nicolas
    2012 IEEE EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES), 2012,
  • [2] Observers Design for Singular Fractional-Order Systems
    N'Doye, Ibrahima
    Darouach, Mohamed
    Zasadzinski, Michel
    Radhy, Nour-Eddine
    2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 4017 - 4022
  • [3] Observer design for a class of nonlinear fractional-order systems with unknown input
    Kong, Shulan
    Saif, Mehrdad
    Liu, Bing
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (13): : 5503 - 5518
  • [4] DESIGN OF OPTIMAL FRACTIONAL LUENBERGER OBSERVERS FOR LINEAR FRACTIONAL-ORDER SYSTEMS
    Dabiri, Arman
    Butcher, Eric A.
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2017, VOL 6, 2017,
  • [5] Design of Functional Fractional-Order Observers for Linear Time-Delay Fractional-Order Systems in the Time Domain
    Boukal, Y.
    Darouach, M.
    Zasadzinski, M.
    Radhy, N. E.
    2014 INTERNATIONAL CONFERENCE ON FRACTIONAL DIFFERENTIATION AND ITS APPLICATIONS (ICFDA), 2014,
  • [6] Unknown input fractional-order functional observer design for one-side Lipschitz time-delay fractional-order systems
    Mai Viet Thuan
    Dinh Cong Huong
    Nguyen Huu Sau
    Quan Thai Ha
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2019, 41 (15) : 4311 - 4321
  • [7] Design of a fractional-order fuzzy PI controller for fractional-order chaotic systems
    Han, Wei
    Gao, Bingkun
    Guo, Haoxuan
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 4825 - 4830
  • [8] Design of unknown-input reduced-order observers for a class of nonlinear fractional-order time-delay systems
    Dinh Cong Huong
    Mai Viet Thuan
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2018, 32 (03) : 412 - 423
  • [9] Robust adaptive fractional-order observer for a class of fractional-order nonlinear systems with unknown parameters
    Chen, Kai
    Tang, Rongnian
    Li, Chuang
    Wei, Pengna
    NONLINEAR DYNAMICS, 2018, 94 (01) : 415 - 427
  • [10] Robust adaptive fractional-order observer for a class of fractional-order nonlinear systems with unknown parameters
    Kai Chen
    Rongnian Tang
    Chuang Li
    Pengna Wei
    Nonlinear Dynamics, 2018, 94 : 415 - 427