ON THE PATHWISE UNIQUENESS OF STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS WITH NON-LIPSCHITZ COEFFICIENTS

被引:0
作者
Zhang, Defei [1 ,2 ]
He, Ping [3 ]
机构
[1] Honghe Univ, Dept Math, Mengzi 661199, Peoples R China
[2] Shandong Univ, Dept Math, Jinan 250100, Peoples R China
[3] Honghe Univ, Dept Math, Mengzi 661100, Peoples R China
基金
美国国家科学基金会;
关键词
Backward doubly stochastic differential equations; stochastic partial differential equations; pathwise uniqueness; non-Lipschitz coefficients; NOISE;
D O I
10.1216/RMJ-2013-43-5-1739
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove a pathwise uniqueness result of a class of stochastic partial differential equations driven by space-time white noise whose coefficients satisfy non-Lipschitz conditions.
引用
收藏
页码:1739 / 1746
页数:8
相关论文
共 14 条
[1]  
Dawson D A, 1993, Ecole d'ete de probabilites de Saint Flour, V1541
[2]  
Dawson D.A., 1975, J. Multivar. Anal, V5, P1, DOI 10.1016/0047-259X(75)90054-8
[3]   THE 1991 WALD MEMORIAL LECTURES - SUPERPROCESSES AND PARTIAL-DIFFERENTIAL EQUATIONS [J].
DYNKIN, EB .
ANNALS OF PROBABILITY, 1993, 21 (03) :1185-1262
[4]   BRANCHING MEASURE-VALUED PROCESSES [J].
DYNKIN, EB ;
KUZNETSOV, SE ;
SKOROKHOD, AV .
PROBABILITY THEORY AND RELATED FIELDS, 1994, 99 (01) :55-96
[5]   CONTINUOUS STATE BRANCHING PROCESSES [J].
LAMPERTI, J .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (03) :382-&
[6]   ADAPTED SOLUTIONS OF BACKWARD STOCHASTIC DIFFERENTIAL-EQUATIONS WITH NON-LIPSCHITZ COEFFICIENTS [J].
MAO, XR .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1995, 58 (02) :281-292
[7]   Stochastic PDEs driven by nonlinear noise and backward doubly SDEs [J].
Matoussi, A ;
Scheutzow, M .
JOURNAL OF THEORETICAL PROBABILITY, 2002, 15 (01) :1-39
[8]  
Mytnik L, 1998, ANN PROBAB, V26, P968
[9]   On pathwise uniqueness for stochastic heat equations with non-Lipschitz coefficients [J].
Mytnik, Leonid ;
Perkins, Edwin ;
Sturm, Anja .
ANNALS OF PROBABILITY, 2006, 34 (05) :1910-1959
[10]   BACKWARD DOUBLY STOCHASTIC DIFFERENTIAL-EQUATIONS AND SYSTEMS OF QUASI-LINEAR SPDES [J].
PARDOUX, E ;
PENG, SG .
PROBABILITY THEORY AND RELATED FIELDS, 1994, 98 (02) :209-227