Effects of Ligands on Charge Generation and Recombination in Hybrid Polymer/Quantum Dot Solar Cells

被引:34
作者
Colbert, Adam E. [1 ]
Wu, Wenbi [1 ]
Janke, Eric M. [1 ]
Ma, Fei [1 ]
Ginger, David S. [1 ]
机构
[1] Univ Washington, Dept Chem, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
BAND-GAP POLYMER; QUANTUM DOTS; SEPARATION DYNAMICS; CONJUGATED POLYMERS; THIN-FILMS; NANOCRYSTALS; BLENDS; PHOTOVOLTAICS; EFFICIENCY; SOLIDS;
D O I
10.1021/acs.jpcc.5b07828
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Control of quantum dot surface chemistry offers a direct approach to tune the molecular interface between donor and acceptor constituents in hybrid bulk heterojunction photovoltaics incorporating organic semiconductors and colloidal quantum dots. We investigate the effects of altering the quantum dot surface chemistry via ligand exchange in blends of PbS quantum dots with the conjugated polymer poly((4,8-bis(octyloxy)benzo(1,2-b:4,5-b')-dithiophene-2,6-diyl) (2-((do decyloxy) carbonyl)thieno (3,4-b) thiophenediy1)) (PTB1). We study organic ligands with both thiol and carboxylic acid functional groups including 1,2-ethanedithiol (EDT), 3-mercaptopropionic acid (MPA), and malonic acid (MA), in addition to inorganic halide ions such as tetrabutylammonium iodide (TBAI). We show that the different ligand treatments influence hybrid solar cell efficiency primarily through changes in open-circuit voltage (V-oc) and fill factor (FF). We use photoinduced absorption (PIA) spectroscopy to probe the generation of long-lived polarons resulting from charge transfer between the donor and acceptor constituents. We further characterize the recombination dynamics in the hybrid devices using transient photovoltage (TPV) and charge extraction (CE) techniques. Both methods show that ligand exchange with MPA yields superior device performance by promoting longer carrier recombination lifetimes under open-circuit conditions.
引用
收藏
页码:24733 / 24739
页数:7
相关论文
共 44 条
[1]   Energy Level Modification in Lead Sulfide Quantum Dot Thin Films through Ligand Exchange [J].
Brown, Patrick R. ;
Kim, Donghun ;
Lunt, Richard R. ;
Zhao, Ni ;
Bawendi, Moungi G. ;
Grossman, Jeffrey C. ;
Bulovic, Vladimir .
ACS NANO, 2014, 8 (06) :5863-5872
[2]   Colloidal Quantum Dot Solar Cells [J].
Carey, Graham H. ;
Abdelhady, Ahmed L. ;
Ning, Zhijun ;
Thon, Susanna M. ;
Bakr, Osman M. ;
Sargent, Edward H. .
CHEMICAL REVIEWS, 2015, 115 (23) :12732-12763
[3]  
Chuang CHM, 2014, NAT MATER, V13, P796, DOI [10.1038/nmat3984, 10.1038/NMAT3984]
[4]   Recombination in polymer-fullerene bulk heterojunction solar cells [J].
Cowan, Sarah R. ;
Roy, Anshuman ;
Heeger, Alan J. .
PHYSICAL REVIEW B, 2010, 82 (24)
[5]   Insights from Transient Optoelectronic Analyses on the Open-Circuit Voltage of Organic Solar Cells [J].
Credgington, Dan ;
Durrant, James R. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (11) :1465-1478
[6]   Photovoltaic Devices with a Low Band Gap Polymer and CdSe Nanostructures Exceeding 3% Efficiency [J].
Dayal, Smita ;
Kopidakis, Nikos ;
Olson, Dana C. ;
Ginley, David S. ;
Rumbles, Garry .
NANO LETTERS, 2010, 10 (01) :239-242
[7]   Impact of microstructure on local carrier lifetime in perovskite solar cells [J].
deQuilettes, Dane W. ;
Vorpahl, Sarah M. ;
Stranks, Samuel D. ;
Nagaoka, Hirokazu ;
Eperon, Giles E. ;
Ziffer, Mark E. ;
Snaith, Henry J. ;
Ginger, David S. .
SCIENCE, 2015, 348 (6235) :683-686
[8]   Photoinduced electron transfer from conjugated polymers to CdSe nanocrystals [J].
Ginger, DS ;
Greenham, NC .
PHYSICAL REVIEW B, 1999, 59 (16) :10622-10629
[9]   Ligand engineering in hybrid polymer:nanocrystal solar cells [J].
Greaney, Matthew J. ;
Brutchey, Richard L. .
MATERIALS TODAY, 2015, 18 (01) :31-38
[10]   Improving Open Circuit Potential in Hybrid P3HT:CdSe Bulk Heterojunction Solar Cells via Colloidal tert-Butylthiol Ligand Exchange [J].
Greaney, Matthew J. ;
Das, Saptaparna ;
Webber, David H. ;
Bradforth, Stephen E. ;
Brutchey, Richard L. .
ACS NANO, 2012, 6 (05) :4222-4230